Download Free Inertial And Lateral Spreading Demands On Soil Pile Structure Systems In Liquefied And Laterally Spreading Ground During Earthquakes Book in PDF and EPUB Free Download. You can read online Inertial And Lateral Spreading Demands On Soil Pile Structure Systems In Liquefied And Laterally Spreading Ground During Earthquakes and write the review.

This book contains the full papers on which the invited lectures of the 4th International Conference on Geotechnical Earthquake Engineering (4ICEGE) were based. The conference was held in Thessaloniki, Greece, from 25 to 28 June, 2007. The papers offer a comprehensive overview of the progress achieved in soil dynamics and geotechnical earthquake engineering, examine ongoing and unresolved issues, and discuss ideas for the future.
Experiences from past earthquakes have shown that lateral spreading associated with liquefaction of cohesionless soils can be a cause of severe damage to bridge foundations. Large diameter extended pile shafts can be an effective bridge foundation choice for areas subjected to lateral spreading because they offer greater stiffness and strength relative to the magnitude of lateral spreading loads that can develop against them. A limited degree of plastic hinging below the ground surface may be allowable in design of extended pile shafts. Issues for design for extended pile shafts include: (a) how to estimate the demands due to superstructure inertia and lateral spreading in liquefied soils, and (b) how to combine these two loads in estimating the local and global inelastic demands on the structure. Studies of the response of pile foundations and pile-supported structures in liquefiable soils using physical models, numerical models, and case studies have provided the basis for a number of design recommendations. The guidance is, however, quite varied regarding how lateral spreading and superstructure inertial loads should be combined in design. To answer the above questions a series of Nonlinear Dynamic Finite Element Analyses (NDA) have been performed to investigate inelastic response of extended pile shafts subjected to liquefaction-induced lateral spreading, covering a range of soil, pile, and ground motion conditions. The results of NDA were first used to show that combined effects of lateral spreading and superstructure inertia produce larger demands than are produced by either loading case alone, such that the combined demand cannot be enveloped by analyzing the two load cases separately. The results were then used to evaluate current equivalent static analysis (ESA) method (Caltrans, 2008), with the relatively poor agreement illustrating the limitations of methods that do not combine the two loads. The results of NDA parametric study were then used to develop and calibrate an ESA procedure. The ESA procedure addresses both the nonliquefaction and liquefaction cases, and includes criteria that identify conditions which tend to produce excessive demands or collapse conditions. Finally, a series of three-dimensional (3D) Nonlinear Dynamic Finite Element Analyses (NDA) were performed to examine inelastic behavior of large diameter extended pile shafts subjected to earthquake shaking and liquefaction-induced lateral spreading. The purpose of these analyses was to evaluate the differences between 2D and 3D simulations, understand the source of any differences, and evaluate whether those differences would affect design recommendations for Equivalent Static Analysis (ESA).
The dynamic response of pile foundations in soft clay and liquefiable sand during strong earthquake shaking was evaluated. The research consisted of two major components: (1) a series of dynamic centrifuge tests of pile-supported structures in soft clay and liquefiable sand; and (2) an evaluation of dynamic "beam on a nonlinear Winkler foundation" (BNWF) analysis methods against the centrifuge model results.
Effective measurement of the composition and properties of petroleum is essential for its exploration, production, and refining; however, new technologies and methodologies are not adequately documented in much of the current literature. Analytical Methods in Petroleum Upstream Applications explores advances in the analytical methods and instrumentation that allow more accurate determination of the components, classes of compounds, properties, and features of petroleum and its fractions. Recognized experts explore a host of topics, including: A petroleum molecular composition continuity model as a context for other analytical measurements A modern modular sampling system for use in the lab or the process area to collect and control samples for subsequent analysis The importance of oil-in-water measurements and monitoring The chemical and physical properties of heavy oils, their fractions, and products from their upgrading Analytical measurements using gas chromatography and nuclear magnetic resonance (NMR) applications Asphaltene and heavy ends analysis Chemometrics and modeling approaches for understanding petroleum composition and properties to improve upstream, midstream, and downstream operations Due to the renaissance of gas and oil production in North America, interest has grown in analytical methods for a wide range of applications. The understanding provided in this text is designed to help chemists, geologists, and chemical and petroleum engineers make more accurate estimates of the crude value to specific refinery configurations, providing insight into optimum development and extraction schemes.
Proceedings of a workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, held in Davis, California, March 16-18, 2005. Sponsored by the Pacific Earthquake Engineering Research Center; University of California at Berkeley; Center for Urban Earthquake Engineering; Tokyo Institute of Technology; Geo-Institute of ASCE. This collection contains 25 papers that discuss physical measurements and observations from earthquake case histories, field tests in blast-liquefied ground, dynamic centrifuge model studies, and large-scale shaking table studies. Papers contain recent findings on fundamental soil-pile interaction mechanisms, numerical analysis methods, and reviews and evaluations of existing and emerging design methodologies. This proceeding provides comprehensive coverage of a major issue in earthquake engineering practice and hazard mitigation efforts.
The collapse of buildings and infrastructure is an unfortunate consequence of major earthquakes (e.g., the 1964 Alaskan earthquake, the 1995 Kobe earthquake in Japan and the 2007 Pisco earthquake in Peru). Liquefaction-induced lateral spreading is known to be one cause of severe damage to deep foundation systems. However, the dynamic soil-structure interaction between liquefied soil and piles is extremely complex and further work is required to define the appropriate design pressures and to understand the mechanisms at work. This thesis presents the findings of an experimental program carried out using the large geotechnical centrifuge at C-CORE in St John's Newfoundland, to investigate the mechanism of lateral spreading and its implications for dynamic soil-pile interaction. Soil and pile responses were measured using accelerometers, pore pressure transducers, and digital imaging using a high speed camera. Using these images, transient profiles of slope deformation were quantitatively measured using Particle Image Velocimetry (PIV). These tests illustrate the potential for earthquake shaking to excite the natural frequency of the liquefied soil column, which can lead to increased transient lateral pressures on piles in liquefiable ground. This study recommends that this potential for "auto tuning" should be anticipated in design and proposes a new limiting pseudo-static backbone p-y curve for use in the design of piles subjected to lateral spreading ground deformation.
Physical Modelling in Geotechnics collects more than 1500 pages of peer-reviewed papers written by researchers from over 30 countries, and presented at the 9th International Conference on Physical Modelling in Geotechnics 2018 (City, University of London, UK 17-20 July 2018). The ICPMG series has grown such that two volumes of proceedings were required to publish all contributions. The books represent a substantial body of work in four years. Physical Modelling in Geotechnics contains 230 papers, including eight keynote and themed lectures representing the state-of-the-art in physical modelling research in aspects as diverse as fundamental modelling including sensors, imaging, modelling techniques and scaling, onshore and offshore foundations, dams and embankments, retaining walls and deep excavations, ground improvement and environmental engineering, tunnels and geohazards including significant contributions in the area of seismic engineering. ISSMGE TC104 have identified areas for special attention including education in physical modelling and the promotion of physical modelling to industry. With this in mind there is a special themed paper on education, focusing on both undergraduate and postgraduate teaching as well as practicing geotechnical engineers. Physical modelling has entered a new era with the advent of exciting work on real time interfaces between physical and numerical modelling and the growth of facilities and expertise that enable development of so called ‘megafuges’ of 1000gtonne capacity or more; capable of modelling the largest and most complex of geotechnical challenges. Physical Modelling in Geotechnics will be of interest to professionals, engineers and academics interested or involved in geotechnics, geotechnical engineering and related areas. The 9th International Conference on Physical Modelling in Geotechnics was organised by the Multi Scale Geotechnical Engineering Research Centre at City, University of London under the auspices of Technical Committee 104 of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). City, University of London, are pleased to host the prestigious international conference for the first time having initiated and hosted the first regional conference, Eurofuge, ten years ago in 2008. Quadrennial regional conferences in both Europe and Asia are now well established events giving doctoral researchers, in particular, the opportunity to attend an international conference in this rapidly evolving specialist area. This is volume 2 of a 2-volume set.
Modeling in Geotechnical Engineering is a one stop reference for a range of computational models, the theory explaining how they work, and case studies describing how to apply them. Drawing on the expertise of contributors from a range of disciplines including geomechanics, optimization, and computational engineering, this book provides an interdisciplinary guide to this subject which is suitable for readers from a range of backgrounds. Before tackling the computational approaches, a theoretical understanding of the physical systems is provided that helps readers to fully grasp the significance of the numerical methods. The various models are presented in detail, and advice is provided on how to select the correct model for your application. Provides detailed descriptions of different computational modelling methods for geotechnical applications, including the finite element method, the finite difference method, and the boundary element method Gives readers the latest advice on the use of big data analytics and artificial intelligence in geotechnical engineering Includes case studies to help readers apply the methods described in their own work