Download Free Inequalities Involving Functions And Their Integrals And Derivatives Book in PDF and EPUB Free Download. You can read online Inequalities Involving Functions And Their Integrals And Derivatives and write the review.

This volume provides a comprehensive, up-to-date survey of inequalities that involve a relationship between a function and its derivatives or integrals. The book is divided into 18 chapters, some of which are devoted to specific inequalities such as those of Kolmogorov-Landau, Wirtinger, Hardy, Carlson, Hilbert, Caplygin, Lyapunov, Gronwell and others. Over 800 references to the literature are cited; proofs are given when these provide insight into the general methods involved; and applications, especially to the theory of differential equations, are mentioned when appropriate. This volume will interest all those whose work involves differential and integral equations. It can also be recommended as a supplementary text.
One service mathematics has rendered the ~l moil ..., Ii j'avait su comment en revenir, je n'y serais point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'(ftre of this series.
It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives", Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequali ties and Applications, http: I /rgmia. vu. edu. au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given.
Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.
This book concentrates on one- and multi-dimensional nonlinear integral and discrete Gronwall-Bellman type inequalities. It complements the author’s book on linear inequalities and serves as an essential tool for researchers interested in differential (ODE and PDE), difference, and integral equations. The present volume is part 2 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.
In 1960 the Polish mathematician Zdzidlaw Opial (1930--1974) published an inequality involving integrals of a function and its derivative. This volume offers a systematic and up-to-date account of developments in Opial-type inequalities. The book presents a complete survey of results in the field, starting with Opial's landmark paper, traversing through its generalizations, extensions and discretizations. Some of the important applications of these inequalities in the theory of differential and difference equations, such as uniqueness of solutions of boundary value problems, and upper bounds of solutions are also presented. This book is suitable for graduate students and researchers in mathematical analysis and applications.
This book provides new contributions to the theory of inequalities for integral and sum, and includes four chapters. In the first chapter, linear inequalities via interpolation polynomials and green functions are discussed. New results related to Popoviciu type linear inequalities via extension of the Montgomery identity, the Taylor formula, Abel-Gontscharoff's interpolation polynomials, Hermite interpolation polynomials and the Fink identity with Green’s functions, are presented. The second chapter is dedicated to Ostrowski’s inequality and results with applications to numerical integration and probability theory. The third chapter deals with results involving functions with nondecreasing increments. Real life applications are discussed, as well as and connection of functions with nondecreasing increments together with many important concepts including arithmetic integral mean, wright convex functions, convex functions, nabla-convex functions, Jensen m-convex functions, m-convex functions, m-nabla-convex functions, k-monotonic functions, absolutely monotonic functions, completely monotonic functions, Laplace transform and exponentially convex functions, by using the finite difference operator of order m. The fourth chapter is mainly based on Popoviciu and Cebysev-Popoviciu type identities and inequalities. In this last chapter, the authors present results by using delta and nabla operators of higher order.
This volume is dedicated to the late Professor Dragoslav S. Mitrinovic(1908-1995), one of the most accomplished masters in the domain of inequalities. Inequalities are to be found everywhere and play an important and significant role in almost all subjects of mathematics as well as in other areas of sciences. Professor Mitrinovic used to say: `There are no equalities, even in human life inequalities are always encountered.' This volume provides an extensive survey of the most current topics in almost all subjects in the field of inequalities, written by 85 outstanding scientists from twenty countries. Some of the papers were presented at the International Memorial Conference dedicated to Professor D.S. Mitrinovic, which was held at the University of Nis, June 20-22, 1996. Audience: This book will be of great interest to researchers in real, complex and functional analysis, special functions, approximation theory, numerical analysis and computation, and other fields, as well as to graduate students requiring the most up-to-date results.