Download Free Industrial Polymer Applications Book in PDF and EPUB Free Download. You can read online Industrial Polymer Applications and write the review.

Industrial Polymer Applications provides a comprehensive overview of the diverse properties and applications of thermoset and thermoplastic polymer technologies used routinely in the modification, protection, repair, restoration and bonding of the main classes of industrial engineering materials such as concrete, masonry, wood, metal, rubber, plastic, glass and advanced ceramics. The Author, with extensive industrial experience in the design and development of polymeric adhesives, composites, concrete repair and industrial coatings materials, provides a balanced perspective of the essential chemistries and technologies for each of the relevant polymeric solutions. This book includes explanations as to why polymers are needed and the specific problems and key industrial application challenges that can be overcome for each class of engineering material. The use of supplementary information boxes, suggestions for further reading, and supportive appendices including worked examples delivers an easy to understand guide of relevant industrial applications of polymers. Written in an accessible way, the book provides a supplementary text for undergraduates, postgraduates and industrialists who have studied or are involved in chemistry, polymer chemistry, industrial chemistry, materials science, chemical engineering, mechanical engineering, civil engineering or corrosion engineering, science and technology.
Aqueous polymer dispersions are environmentally friendly and therefore they have replaced in many applications polymers dissolved in organic solvents. This substitution process is still ongoing. This book discusses the world of aqueous polymer dispersions from the viewpoint of how they are applied. For a better understanding it starts with a general description of the synthesis of polymer dispersions and their characterization. The following chapters are dedicated to a wide variety of applications, including history, modern processes, and typical formulations and performance. The selection and the usage of a polymer dispersion are not uniform around the world because of historical and regional differences of the technical developments and marketing demands. Leading scientists from industry contributed to this book ensuring that practical issues are emphasized.
This text examines the effect of radiation on polymers and the versatility of its industrial applications. By helping readers understand and solve problems associated with radiation processing of polymers, it serves as an important reference and fills a gap in the literature. Radiation processing can significantly improve important properties of polymers, however, there are still misconceptions about processing polymers by using ionizing radiation. This book explains the radiation processing of polymeric materials used in many industrial products including cars, airplanes, computers, and TVs. It even addresses emerging "green" issues like biomaterials and hydrogels.
Derived from the fourth edition of the well-known Plastics Technology Handbook, Industrial Polymers, Specialty Polymers, and Their Applications covers a wide range of general and special types of polymers
Loaded with practical knowledge, Reactive Polymers Fundamentals and Applications: A Concise Guide to Industrial Polymers comprehensively presents the state-of-art of methods and materials for the formulation of polymeric resins. It is an indispensable tool for chemists, engineers, and manufacturers who use, formulate, and cure raw materials into final products. The text focuses on the chemical modification of properties during the final stage of part fabrication from plastics. Newer applications range from the small scale, such as dental fillings, to industrial processes for batch fabrication. The book covers resin groups in major use in industry and under active research and development.
This book focuses on food, non-food, and industrial packaging applications of polymers, blends, nanostructured materials, macro, micro and nanocomposites, and renewable and biodegradable materials. It details physical, thermal, and barrier properties as well as sustainability, recycling, and regulatory issues. The book emphasizes interdisciplinary research on processing, morphology, structure, and properties as well as applications in packaging of food and industrial products. It is useful for chemists, physicists, materials scientists, food technologists, and engineers.
A supplementary text covering the use of polymers in the modification, protection, repair, restoration and bonding of the main classes of industrial engineering materials.
This book describes industrial applications of polyolefins from the researchers' perspective. Polyolefins constitute today arguably the most important class of polymers and polymeric materials for widespread industrial applications. This book summarizes the present state of the art. Starting from fundamental aspects, such as the polymerization techniques to synthesize polyolefins, the book introduces the topic. Basic knowledge about polyolefin composites and blends is explained, before applications aspects in different industry sectors are discussed. The spectrum comprises a wide range of applications and industry sectors, such as the packaging and food industry, the textile industry, automotive and buildings, and even biomedical applications. Topics, which are addressed in the various chapters, comprise synthesis and processing of the materials; their classification; mechanical, physical and technical requirements and properties; their characterization; and many more. In the end of the book, even the disposal, degradation and recycling of polyolefins are addressed, and light is shed on their commercial significance and economic value. In this way, the book follows the entire 'lifetime' of polyolefin compounds and materials: from their synthesis and processing, over applications, to the recycling and reuse of disposed or degraded polyolefin substrates.
Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources to Functional Products is a detailed guide to the use of biopolymers for advanced applications across a range of key industries. In terms of processing and cost, bio-based polymers are becoming increasingly viable for an ever-broadening range of novel industrial applications. The book begins with an overview of biopolymers, explaining resources, demands, sustainability, life cycle assessment (LCA) modeling and simulation, and classifications. Further in-depth chapters explore the latest techniques and methodologies for isolation and physicochemical characterization, materials selection, and processing for blends and composites. Chapters 6 to 14 each focus on the preparation and applications of biopolymers in a specific industrial area, including food science and nutraceuticals, medicine and pharmaceuticals, textiles, cosmeceutical, packaging, adhesives and automotive, 3D printing, super capacitor and energy storage devices, and environmental applications. The final chapter compares and analyzes biopolymers alongside synthetic polymers, also offering valuable insight into social, economic, and environmental aspects. This is an essential resource for those seeking to understand, research, or utilize biopolymers in industrial applications. This includes researchers, scientists, and advanced students working in biopolymers, polymer science, polymer chemistry, biomaterials, materials science, nanotechnology, composites, and biotechnology. This is a highly valuable book for scientists, R&D professionals, designers, and engineers across multiple industries and disciplines, who are looking to utilize biopolymers for components and products. Introduces a broad range of industrial application areas, including food, medicine, textiles, cosmetics, packaging, automotive, 3D printing, energy, and more Offers an industry-oriented approach, addressing challenges and explaining the preparation and application of biopolymers for functional products and parts Considers important factors such as resources, classification, sustainability, and life cycle assessment (LCA) modeling and simulation Compares and analyzes biopolymers alongside synthetic polymers, also offering valuable insight into social, economic, and environmental aspects
Manufacturing and Novel Applications of Multilayer Polymer Films discusses the advancements in multilayer technology, including its capability to produce hundreds of layers in a single film by a melt coextrusion process. These engineered films can have significantly enhanced performance properties, allowing films to be made thinner, stronger, and with better sealing properties. As recent developments in feedblocks and materials have opened up a range of new possibilities, this book discusses different feedblocks, and viscosity and material considerations. It is the first comprehensive summary of the latest technology in multilayer film processing and related applications, and is written from a practical perspective, translating research into commercial production and real world products. The book provides fundamental knowledge on microlayer coextrusion processing technology, how to fabricate such structures, structure and properties of such microlayers, and potential applications, thus helping research scientists and engineers develop products which not only fulfill their primary function, but can also be manufactured reliably, safely, and economically. Provides a fundamental knowledge of microlayer coextrusion processing, including how to fabricate microlayer structures, the properties of microlayers, and potential applications, including optics, polymer film capacitors, and semiconductors Includes an in-depth analysis of all technologies used for producing multilayered films and structures by coextrusion processing Thoroughly assesses potential future trends in multilayer coextrusion technology, thus enabling engineers and scientists to stay ahead of the curve in this rapidly advancing area