Download Free Industrial Plastics Book in PDF and EPUB Free Download. You can read online Industrial Plastics and write the review.

Table of contents
Industrial Applications of Renewable Plastics: Environmental, Technological, and Economic Advances provides practical information to help engineers and materials scientists deploy renewable plastics in the plastics market. It explores the uses, possibilities, and problems of renewable plastics and composites to assist in material selection and rejection. The designer's main problems are examined, along with basic reminders that deal with structures and processing methods that can help those who are generally familiar with metals understand the unique properties of plastic materials. The book offers a candid overview of main issues, including conservation of fossil resources, geopolitical considerations, greenhouse effects, competition with food crops, deforestation, pollution, and disposal of renewable plastics. In addition, an overview of some tools related to sustainability (Life cycle assessments, CO2 emissions, carbon footprint, and more) is provided. The book is an essential resource for engineers and materials scientists involved in material selection, design, manufacturing, molding, fabrication, and other links in the supply chain of plastics. The material contained is of great relevance to many major industries, including automotive and transport, packaging, aeronautics, shipbuilding, industrial and military equipment, electrical and electronics, energy, and more. - Provides key, enabling information for engineers and materials scientists looking to increase the use of renewable plastic materials in their work - Presents practical guidance to assist in materials selection, processing methods, and applications development, particularly for designers more familiar with other materials, such as metals - Includes a candid discussion of the pros and cons of using renewable plastics, considering the technical, economic, legal, and environmental aspects
This text offers broad coverage of the many facets of industrial plastics, including the latest environmental issues in plastics recycling. Included are well-illustrated laboratory activities related to all major topics and are appropriate for various types of equipment. Each chapter includes a vocabulary list and series of questions to aid in student comprehension. Included are well-illustrated laboratory activities related to all major topics, and each chapter includes a vocabulary list, series of questions.
This book is a collection of papers by individuals in industry and academia on research and application development of conductive polymers and plastics. Conductive plastics are positioned to play an increasingly important role in affairs of mankind, specifically in the area of electrical and electronic conductivity. While general knowledge about conductive polymers and plastics has been available for many years, a true understanding of their application has only taken place in the last 3 to 4 years. This is attributed to advances in materials and processing techniques. Engineers have only begun to explore the design freedom and economic benefits of specifying conductive polymers and plastics in industrial and business applications.This book is a key reference and guide to the use of conductive polymers and plastics. It is a summary of existing technologies, but also a look at future possibilities.
This is the first detailed description in English of radiation and polymeric material interaction and the influences of thermal and optical material properties. As such, it provides comprehensive information on material and process characteristics as well as applications regarding plastic laser welding. The first part of this practical book introduces the structure and physical properties of plastics, before discussing the interaction of material and radiation in the NIR and IR spectral range. This is followed by an overview of the physical foundations of laser radiation and laser sources used for plastic welding. The third part describes the main processes of laser welding thermoplastics, as well as possibilities of process control, design of joint geometry, material compatibilities and adaptation of absorption of plastics to NIR radiation. Finally, the author explains applications of laser welding plastics using several industrial case studies from the automotive industry, household goods, and medical devices. Tailored to the needs of everyone dealing with laser welding of plastics, especially engineers in packaging, component manufacturing, and the medical industry.
Brydson's Plastics Materials, Eighth Edition, provides a comprehensive overview of the commercially available plastics materials that bridge the gap between theory and practice. The book enables scientists to understand the commercial implications of their work and provides engineers with essential theory. Since the previous edition, many developments have taken place in plastics materials, such as the growth in the commercial use of sustainable bioplastics, so this book brings the user fully up-to-date with the latest materials, references, units, and figures that have all been thoroughly updated. The book remains the authoritiative resource for engineers, suppliers, researchers, materials scientists, and academics in the field of polymers, including current best practice, processing, and material selection information and health and safety guidance, along with discussions of sustainability and the commercial importance of various plastics and additives, including nanofillers and graphene as property modifiers. With a 50 year history as the principal reference in the field of plastics material, and fully updated by an expert team of polymer scientists and engineers, this book is essential reading for researchers and practitioners in this field. - Presents a one-stop-shop for easily accessible information on plastics materials, now updated to include the latest biopolymers, high temperature engineering plastics, thermoplastic elastomers, and more - Includes thoroughly revised and reorganised material as contributed by an expert team who make the book relevant to all plastics engineers, materials scientists, and students of polymers - Includes the latest guidance on health, safety, and sustainability, including materials safety data sheets, local regulations, and a discussion of recycling issues
Derived from the fourth edition of the well-known Plastics Technology Handbook, Industrial Polymers, Specialty Polymers, and Their Applications covers a wide range of general and special types of polymers
Design and Manufacturing of Plastics Products: Integrating Conventional Methods and Innovative Technologies brings together detailed information on design, materials selection, properties, manufacturing, and the performance of plastic products, incorporating the utilization of the latest novel techniques and additive manufacturing technologies. The book integrates the design of molded products and conventional manufacturing and molding techniques with recent additive manufacturing techniques to produce performant products and cost-effective tools. Key areas of innovation are explained in detail, including hybrid molds, the integration of processing options with product properties and performance, and sustainability factors such as eco-design strategies, recycling, and lifecycle assessment. Other sections cover the development of plastics products, including design methodologies, design solutions specific to plastics, and design for re-use, as well as manufacturing and performance, with an emphasis on thermoplastic molding techniques, recent advances on plastics tooling, and the appraisal of the influence of processing options on product performance. This is a valuable resource to plastics engineers, design engineers, mold makers, and product or part designers across industries. It will also be of interest to researchers and advanced students in plastics engineering, polymer science, additive manufacturing and mechanical engineering. Offers a thorough grounding in plastics part design, thermoplastic material selection, properties, manufacture and performance of plastic parts Presents the latest advances, including the integration of additive manufacturing in the plastics product development cycle, hybrid molds, and lifecycle and recycling considerations Enables the reader to utilize traditional methods alongside cutting-edge technologies in the production of performant plastic products and parts
Designing Successful Products with Plastics: Fundamentals of Plastic Part Design provides expert insight into design considerations required to bring a concept product or part through design and ready-for-production. The book shows how integrating four key choices—materials, processes, tooling and design—in every design decision allows the designer to fully vet and optimize the design. Rather than focusing on design rules and engineering equations used during product development, the emphasis of the book is on what the designer needs to consider during the early conceptual visualization stages, and in the detailed stages of the design process. This approach will bridge the gap between the industrial designer, tasked with the 'big picture' product design and use, and the part designer, tasked with the detailed plastic part design for manufacture. Useful to both experienced and novice designers, this book brings valuable design process information through specific examples, enabling designers and engineers in the plastics industry to effectively use the available technical information to successfully design and manufacture new products. - Bridges the gap between the industrial designer working on product design and use, and the part designer working on detailed part design for manufacture - Enables designers to establish a solid foundation for new product development on the 'four pillars' of the process: materials, processes, tooling, and design - Provides a hierarchy and roadmap through creative product design and implementation, so engineers can translate a product from creative concept through to realization and commercialization
When combined with reinforcing agents, plastics can be used for a number of high-temperature applications. Plastics Reinforcement and Industrial Applications provides a detailed discussion on plastics, polymers, and reinforcing agents (including organic and natural biomaterials). Focused specifically on improving the mechanical, thermal, and electr