Download Free Industrial Crop Plants Book in PDF and EPUB Free Download. You can read online Industrial Crop Plants and write the review.

The demand for plant-based industrial raw materials has increased as well as research into expanding the utility of plants for current and future uses. Plants are renewable, have limited or positive environmental impact and have the potential to yield a wide range of products in contrast to petroleum-based materials. Plants can be used in a variety of different industries and products including bioenergy, industrial oil and starch, fibre and dye, rubber and related compounds, insecticide and land rehabilitation. This title offers a comprehensive coverage of each of these uses. Chapters discuss.
Industrial Oil Crops presents the latest information on important products derived from seed and other plant oils, their quality, the potential environmental benefit, and the latest trends in industrial uses. This book provides a comprehensive view of key oil crops that provide products used for fuel, surfactants, paints and coatings, lubricants, high-value polymers, safe plasticizers and numerous other products, all of which compete effectively with petroleum-derived products for quality and cost. Specific products derived from oil crops are a principle concern, and other fundamental aspects of developing oil crops for industrial uses are also covered. These include improvement through traditional breeding, and molecular, tissue culture and genetic engineering contributions to breeding, as well as practical aspects of what is needed to bring a new or altered crop to market. As such, this book provides a handbook for developing products from renewable resources that can replace those currently derived from petroleum. Led by an international team of expert editors, this book will be a valuable asset for those in product research and development as well as basic plant research related to oil crops. - Up-to-date review of all the key oilseed crops used primarily for industrial purposes - Highlights the potential for providing renewable resources to replace petroleum derived products - Comprehensive chapters on biodiesel and polymer chemistry of seed oil - Includes chapters on economics of new oilseed crops, emerging oilseed crops, genetic modification and plant tissue culture technology for oilseed improvement
Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, Second Edition presents a comprehensive look at the implementation of plant factory (PF) practices to yield food crops for both improved food security and environmental sustainability. Edited and authored by leading experts in PF and controlled environment agriculture (CEA), the book is divided into five sections, including an Overview and the Concept of Closed Plant Production Systems (CPPS), the Basics of Physics and Physiology – Environments and Their Effects, System Design, Construction, Cultivation and Management and Plant Factories in Operation. In addition to new coverage on the rapid advancement of LED technology and its application in indoor vertical farming, other revisions to the new edition include updated information on the status of business R&D and selected commercial PFALs (plant factory with artificial lighting). Additional updates include those focused on micro and mini-PFALs for improving the quality of life in urban areas, the physics and physiology of light, the impact of PFAL on the medicinal components of plants, and the system design, construction, cultivation and management issues related to transplant production within closed systems, photoautotrophic micro-propagation and education, training and intensive business forums on PFs. - Includes coverage of LED technology - Presents case-studies for real-world insights and application - Addresses PF from economics and planning, to operation and lifecycle assessment
Petroleum-based industrial products have gradually replaced products derived from biological materials. However, biologically based products are making a comebackâ€"because of a threefold increase in farm productivity and new technologies. Biobased Industrial Products envisions a biobased industrial future, where starch will be used to make biopolymers and vegetable oils will become a routine component in lubricants and detergents. Biobased Industrial Products overviews the U.S. land resources available for agricultural production, summarizes plant materials currently produced, and describes prospects for increasing varieties and yields. The committee discusses the concept of the biorefinery and outlines proven and potential thermal, mechanical, and chemical technologies for conversion of natural resources to industrial applications. The committee also illustrates the developmental dynamics of biobased products through existing examples, as well as products still on the drawing board, and it identifies priorities for research and development.
The global biodiversity and climate emergencies demand transformative changes to human activities. For example, food production relies on synthetic, industrial and non-sustainable products for managing pests, weeds and diseases of crops. Sustainable farming requires approaches to managing these agricultural constraints that are more environmentally benign and work with rather than against nature. Increasing pressure on synthetic products has reinvigorated efforts to identify alternative pest management options, including plant-based solutions that are environmentally benign and can be tailored to different farmers’ needs, from commercial to small holder and subsistence farming. Botanical insecticides and pesticidal plants can offer a novel, effective and more sustainable alternative to synthetic products for controlling pests, diseases and weeds. This Special Issue reviews and reports the latest developments in plant-based pesticides from identification of bioactive plant chemicals, mechanisms of activity and validation of their use in horticulture and disease vector control. Other work reports applications in rice weeds, combination biopesticides and how chemistry varies spatially and influences the effectiveness of botanicals in different locations. Three reviews assess wider questions around the potential of plant-based pest management to address the global challenges of new, invasive and established crop pests and as-yet underexploited pesticidal plants.
This book examines the development of innovative modern methodologies towards augmenting conventional plant breeding, in individual crops, for the production of new crop varieties under the increasingly limiting environmental and cultivation factors to achieve sustainable agricultural production, enhanced food security, in addition to providing raw materials for innovative industrial products and pharmaceuticals. This is Vol 6, subtitled Industrial and Food Crops, which consists of two parts. Included in Part I are 11 industrial plant species utilized as sources of raw materials for the production of industrial products including pulp and wood crops (acacia), fiber (cotton, jute and ramie), rubber (guayule and rubber tree), oil (jojoba and flax), biofuels and pharmaceutical (agave) and sugar source (sugarcane). Part II covers 7 food plants selected for their utilization in food industries for the production of chocolate (cacao), cooking oil (oil palm, safflower, sesame and sunflower) and natural flavors and aroma (saffron and vanilla). This volume is contributed by 60 internationally reputable scientists from 14 countries. Each chapter comprehensively reviews the modern literature on the subject and reflects the authors own experience.
This anchor volume to the series Managing Global Genetic Resources examines the structure that underlies efforts to preserve genetic material, including the worldwide network of genetic collections; the role of biotechnology; and a host of issues that surround management and use. Among the topics explored are in situ versus ex situ conservation, management of very large collections of genetic material, problems of quarantine, the controversy over ownership or copyright of genetic material, and more.
The practice of biotechnology, though different in style, scale and substance in globalizing science for development involves all countries. Investment in biotechnology in the industrialised, the developing, and the least developed countries, is now amongst the widely accepted avenues being used for economie development. The simple utilization of kefir technology, the detoxification of injurious chemical pesticides e.g. parathion, the genetic tailoring of new crops, and the production of a first of a kind of biopharmaceuticals illustrate the global scope and content of biotechnology research endeavour and effort. In the developing and least developed nations, and in which the 9 most populous countries· are encountered, problems concerning management of the environment, food security, conservation of human health resources and capacity building are important factors that influence the path to sustainable development. Long-term use of biotechnology in the agricultural, food, energy and health sectors is expected to yield a windfall of economic, environmental and social benefits. Already the prototypes of new medicines and of prescription fruit vaccines are available. Gene based agriculture and medieine is increasingly being adopted and accepted. Emerging trends and practices are reflected in the designing of more efficient bioprocesses, and in new research in enzyme and fermentation technology, in the bioconversion of agro industrial residues into bio-utility products, in animal healthcare, and in the bioremediation and medical biotechnologies. Indeed, with each new day, new horizons in biotechnology beckon.
This work powerfully asserts the idea that rather than using pesticides, the key to helping crops resist attacks from pests is to improve their strength through natural processes. Many of industrial agriculture's fundamental principles for fighting disease, in particular the reliance on pesticides and fertilizers, are explained and convincingly challenged and a new set of guiding principles for an ecological agricultural system are presented as a genuine alternative to the widespread use of chemicals.