Download Free Industrial Applications Of X Ray Diffraction Book in PDF and EPUB Free Download. You can read online Industrial Applications Of X Ray Diffraction and write the review.

By illustrating a wide range of specific applications in all major industries, this work broadens the coverage of X-ray diffraction beyond basic tenets, research and academic principles. The book serves as a guide to solving problems faced everyday in the laboratory, and offers a review of the current theory and practice of X-ray diffraction, major advances and potential uses.
This book explores novel methods for implementing X-ray diffraction technology as an imaging modality, which have been made possible through recent breakthroughs in detector technology, computational power, and data processing algorithms. The ability to perform fast, spatially-resolved X-ray diffraction throughout the volume of a sample opens up entirely new possibilities in areas such as material analysis, cancer diagnosis, and explosive detection, thus offering the potential to revolutionize the fields of medical, security, and industrial imaging and detection. Featuring chapters written by an international selection of authors from both academia and industry, the book provides a comprehensive discussion of the underlying physics, architectures, and applications of X-ray diffraction imaging that is accessible and relevant to neophytes and experts alike. Teaches novel methods for X-ray diffraction imaging Comprehensive and self-contained discussion of the relevant physics, imaging techniques, system components, and data processing algorithms Features state-of-the-art work of international authors from both academia and industry. Includes practical applications in the medical, industrial, and security sectors
While books on the medical applications of x-ray imaging exist, there is not one currently available that focuses on industrial applications. Full of color images that show clear spectrometry and rich with applications, X-Ray Imaging fills the need for a comprehensive work on modern industrial x-ray imaging. It reviews the fundamental science of x-ray imaging and addresses equipment and system configuration. Useful to a broad range of radiation imaging practitioners, the book looks at the rapid development and deployment of digital x-ray imaging system.
An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.
By illustrating a wide range of specific applications in all major industries, this work broadens the coverage of X-ray diffraction beyond basic tenets, research and academic principles. The book serves as a guide to solving problems faced everyday in the laboratory, and offers a review of the current theory and practice of X-ray diffraction, major
In the United States there are several thousand devices containing high-activity radiation sources licensed for use in areas ranging from medical uses such as cancer therapy to safety uses such as testing of structures and industrial equipment. Those radiation sources are licensed by the U.S. Nuclear Regulatory Commission and state agencies. Concerns have been raised about the safety and security of the radiation sources, particularly amid fears that they could be used to create dirty bombs, or radiological dispersal device (RDD). In response to a request from Congress, the U.S. Nuclear Regulatory Commission asked the National Research Council to conduct a study to review the uses of high-risk radiation sources and the feasibility of replacing them with lower risk alternatives. The study concludes that the U.S. government should consider factors such as potential economic consequences of misuse of the radiation sources into its assessments of risk. Although the committee found that replacements of most sources are possible, it is not economically feasible in some cases. The committee recommends that the U.S. government take steps to in the near term to replace radioactive cesium chloride radiation sources, a potential "dirty bomb" ingredient used in some medical and research equipment, with lower-risk alternatives. The committee further recommends that longer term efforts be undertaken to replace other sources. The book presents a number of options for making those replacements.
Papers presented at the seminar held in Defence Metallurgical Research Laboratory, Hyderabad India in 2003.
An excellent book for professional crystallographers! In 2012 the crystallographic community celebrated 100 years of X-ray diffraction in honour of the pioneering experiment in 1912 by Max von Laue, Friedrich and Knipping. Experimental developments e.g. brilliant X-ray sources, area detection, and developments in computer hardware and software have led to increasing applications in X-ray analysis. This completely revised edition is a guide for practical work in X-ray analysis. An introduction to basic crystallography moves quickly to a practical and experimental treatment of structure analysis. Emphasis is placed on understanding results and avoiding pitfalls. Essential reading for researchers from the student to the professional level interested in understanding the structure of molecules.
X-Ray Fluorescence Spectrometry, Ron Jenkins Written by the principal scientist for JCPDS, the International Centre for Diffraction Data, Swarthmore, Pennsylvania, this book focuses on the scientific and technological developments achieved in the field during the past decade. It offers comprehensive coverage of all crucial topics, including: the properties and uses of X-ray emission spectrometry in material analysis; its industrial applications; X-ray diffraction; instrumentation for X-ray fluorescence spectrometry; a comparison of wavelength and energy dispersive spectrometers; and use of X-ray spectrometry for qualitative analysis.
With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials