Download Free Industrial Applications Of Carbon Nanotubes Book in PDF and EPUB Free Download. You can read online Industrial Applications Of Carbon Nanotubes and write the review.

Industrial Applications of Carbon Nanotubes covers the current applications of carbon nanotubes in various industry sectors, from the military to visual display products, and energy harvesting and storage. It also assesses the opportunities and challenges for increased commercialization and manufacturing of carbon nanotubes in the years ahead. Real-life case studies illustrate how carbon nanotubes are used in each industry sector covered, providing a valuable resource for scientists and engineers who are involved and/or interested in carbon nanotubes in both academia and industry. The book serves as a comprehensive guide to the varied uses of carbon nanotubes for specialists in many related fields, including chemistry, physics, biology, and textiles. - Explains how carbon nanotubes can be used to improve the efficiency and performance of industrial products - Includes real-life case studies to illustrate how carbon nanotubes have been successfully employed - Explores how carbon nanotubes could be mass-manufactured in the future, and outlines the challenges that need to be overcome
Industrial Applications of Carbon Nanotubes covers the current applications of carbon nanotubes in various industry sectors, from the military to visual display products, and energy harvesting and storage. It also assesses the opportunities and challenges for increased commercialization and manufacturing of carbon nanotubes in the years ahead. Real-life case studies illustrate how carbon nanotubes are used in each industry sector covered, providing a valuable resource for scientists and engineers who are involved and/or interested in carbon nanotubes in both academia and industry. The book serves as a comprehensive guide to the varied uses of carbon nanotubes for specialists in many related fields, including chemistry, physics, biology, and textiles.
Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of “peapod” structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable.
Carbon-Based Nanofillers and their Rubber Nanocomposites: Fundamentals and Applications provides the synthetic routes, characterization, structural properties and effect of nano fillers on rubber nanocomposites. The synthesis and characterization of all carbon-based fillers is discussed, along with their morphological, thermal, mechanical, dynamic mechanical, and rheological properties. The book also covers the theory, modeling, and simulation aspects of these nanocomposites and their various applications. Users will find a valuable reference source for graduates and post graduates, engineers, research scholars, polymer engineers, polymer technologists, and those working in the biomedical field. - Reviews rubber nanocomposites, specifically carbon-associated nanomaterials (nanocarbon black, graphite, graphene, carbon nanotubes, fullerenes, diamond) - Presents the synthesis and characterization of carbon based nanocomposites - Relates the structure of these nanocomposites to their function as rubber additives and their many applications
This book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.
Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research. Current and potential applications of both materials, including the prospect for large-scale synthesis of graphene, biological structures, and flexible electronics, are also critically discussed. - Updated discussion of properties, structure, and morphology of biological and flexible electronic applications aids fundamental knowledge discovery - Innovative parallel focus on nanotubes and graphene enables you to learn from the successes and failures of, respectively, mature and emergent partner research disciplines - High-quality figures and tables on physical and mathematical applications expertly summarize key information – essential if you need quick, critically relevant data
Carbon nanotubes belong to new nanomaterials and have been known for almost 20 years, but their history is somewhat lengthier. They have been identified as promising candidates for various applications.High-temperature preparation techniques are conventional techniques for the synthesis of carbon nanotubes using arc discharge or laser ablation, but today these methods are being replaced by low-temperature vapor deposition techniques, since orientation, alignment, nanotube length, diameter, purity, and density of carbon nanotubes can be precisely controlled. The synthesis of carbon nanotubes by chemical vapor deposition on catalyst arrays leads to nanotube models grown from specific sites on surfaces. The controlled synthesis of nanotubes opens up interesting possibilities in nanoscience and nanotechnologies, including electrical, mechanical and electromechanical properties and devices, chemical functionalization, surface chemistry and photochemistry, molecular sensors, and interfacing with moderate biological systems.Carbon nanotubes are used in many applications due to their unique electrical, mechanical, optical, thermal, and other properties. Conductive and high-strength composite materials, energy saving and energy conversion devices, sensors, visualization of field emissions and sources of radiation, means for storing hydrogen, and nanoscale semiconductor devices, probes, and interconnections are some of the many applications of carbon nanotubes.
Since their discovery in 1977, the evolution of conducting polymers has revolutionized modern science and technology. These polymers enjoy a special status in the area of materials science yet they are not as popular among young readers or common people when compared to other materials like metals, paper, plastics, rubber, textiles, ceramics and composites like concrete. Most importantly, much of the available literature in the form of papers, specific review articles and books is targeted either at advanced readers (scientists / technologists / engineers / senior academicians) or for those who are already familiar with the topic (doctoral / postdoctoral scholars). For a beginner or even school / college students, such compilations are bit difficult to access / digest. In fact, they need proper introduction to the topic of conducting polymers including their discovery, preparation, properties, applications and societal impact, using suitable examples and already known principles/knowledge/phenomenon. Further, active participation of readers in terms of "question & answers", "fill-in-the-blanks", "numerical" along with suitable answer key is necessary to maintain the interest and to initiate the "thought process". The readers also need to know about the drawbacks and any hazards of such materials. Therefore, I believe that a comprehensive source on the science / technology of conducting polymers which maintains a link between grass root fundamentals and state-of-the-art R&D is still missing from the open literature.
This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.
Advanced carbon materials such as graphene, fullerenes, hierarchical carbon, and carbon nanotubes (CNTs) have exceptional physical properties, making them useful for several applications in fields ranging from energy and industry to electronics and drug delivery. This book includes comprehensive information on fabrication, emerging physical properties, and technological applications of advanced carbon materials. Over three sections, chapters cover such topics as advanced carbon materials in engineering, conjugation of graphene with other 2D materials, fabrication of CNTs and their use in tissue engineering and orthopaedics, and advanced carbon materials for sustainable applications, among others.