Download Free Induced Representations Of Double Affine Hecke Algebras And Applications Book in PDF and EPUB Free Download. You can read online Induced Representations Of Double Affine Hecke Algebras And Applications and write the review.

This is an essentially self-contained monograph in an intriguing field of fundamental importance for Representation Theory, Harmonic Analysis, Mathematical Physics, and Combinatorics. It is a major source of general information about the double affine Hecke algebra, also called Cherednik's algebra, and its impressive applications. Chapter 1 is devoted to the Knizhnik-Zamolodchikov equations attached to root systems and their relations to affine Hecke algebras, Kac-Moody algebras, and Fourier analysis. Chapter 2 contains a systematic exposition of the representation theory of the one-dimensional DAHA. It is the simplest case but far from trivial with deep connections in the theory of special functions. Chapter 3 is about DAHA in full generality, including applications to Macdonald polynomials, Fourier transforms, Gauss-Selberg integrals, Verlinde algebras, and Gaussian sums. This book is designed for mathematicians and physicists, experts and students, for those who want to master the double Hecke algebra technique. Visit http://arxiv.org/math.QA/0404307 to read Chapter 0 and selected topics from other chapters.
This is an essentially self-contained monograph centered on the new double Hecke algebra technique.
As the interaction of mathematics and theoretical physics continues to intensify, the theories developed in mathematics are being applied to physics, and conversely. This book centers around the theory of primitive forms which currently plays an active and key role in topological field theory (theoretical physics), but was originally developed as a mathematical notion to define a "good period mapping" for a family of analytic structures. The invited papers in this volume are expository in nature by participants of the Taniguchi Symposium on "Topological Field Theory, Primitive Forms and Related Topics" and the RIMS Symposium bearing the same title, both held in Kyoto. The papers reflect the broad research of some of the world's leading mathematical physicists, and should serve as an excellent resource for researchers as well as graduate students of both disciplines.
The University of Virginia (Charlottesville) hosted an international conference on Infinite-dimensional Aspects of Representation Theory and Applications. This volume contains papers resulting from the mini-courses and talks given at the meeting. Beyond the techniques and ideas related to representation theory, the book demonstrates connections to number theory, algebraic geometry, and mathematical physics. The specific topics covered include Hecke algebras, quantum groups, infinite-dimensional Lie algebras, quivers, modular representations, and Gromov-Witten invariants. The book is suitable for graduate students and researchers interested in representation theory.
Calogero-Moser systems, which were originally discovered by specialists in integrable systems, are currently at the crossroads of many areas of mathematics and within the scope of interests of many mathematicians. More specifically, these systems and their generalizations turned out to have intrinsic connections with such fields as algebraic geometry (Hilbert schemes of surfaces), representation theory (double affine Hecke algebras, Lie groups, quantum groups), deformation theory (symplectic reflection algebras), homological algebra (Koszul algebras), Poisson geometry, etc. The goal of the present lecture notes is to give an introduction to the theory of Calogero-Moser systems, highlighting their interplay with these fields. Since these lectures are designed for non-experts, the author gives short introductions to each of the subjects involved and provides a number of exercises.
The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.
This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter. Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.