Download Free Index To The Literature Of Thermodynamics Book in PDF and EPUB Free Download. You can read online Index To The Literature Of Thermodynamics and write the review.

Four-part treatment covers principles of quantum statistical mechanics, systems composed of independent molecules or other independent subsystems, and systems of interacting molecules, concluding with a consideration of quantum statistics.
Designed by two MIT professors, this authoritative text discusses basic concepts and applications in detail, emphasizing generality, definitions, and logical consistency. More than 300 solved problems cover realistic energy systems and processes.
The laws of thermodynamics are amongst the most assured and wide-ranging of all scientific laws. They do not pretend to explain any observation in molecular terms but, by showing the necessary relationships between different physical properties, they reduce otherwise disconnected results to compact order, and predict new effects. This classic title, first published in 1957, is a systematic exposition of principles, with examples of applications, especially to changes of places and the conditions for stability. In all this entropy is a key concept.
In this classic of modern science, the Nobel laureate presents a clear treatment of systems, the First and Second Laws of Thermodynamics, entropy, thermodynamic potentials, and much more. Calculus required.
The title is a perfect description. Arranged alphabetically this book explains the words and phrases that crop up in thermodynamics. The author does this without resorting to pages of mathematics and algebra: the author's main aim is to explain and clarify the jargon and concepts.Thermodynamics is often difficult and confusing for students. The author knows this after 20 years of teaching and does something about it with this dictionary.
Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.
Thermodynamics is designed for the first course on thermodynamics offered to undergraduate students of mechanical engineering. The book presents the Macroscopic (classical) and Microscopic (Statistical) thermodynamics including applications to power cycles, and aims to create an analytical mind in the reader to solve problems.
This book deals with the various thermodynamic concepts used for the analysis of nonlinear dynamical systems. The most important invariants used to characterize chaotic systems are introduced in a way that stresses the interconnections with thermodynamics and statistical mechanics. Among the subjects treated are probabilistic aspects of chaotic dynamics, the symbolic dynamics technique, information measures, the maximum entropy principle, general thermodynamic relations, spin systems, fractals and multifractals, expansion rate and information loss, the topological pressure, transfer operator methods, repellers and escape. The more advanced chapters deal with the thermodynamic formalism for expanding maps, thermodynamic analysis of chaotic systems with several intensive parameters, and phase transitions in nonlinear dynamics.
Introductory Statistical Thermodynamics is a text for an introductory one-semester course in statistical thermodynamics for upper-level undergraduate and graduate students in physics and engineering. The book offers a high level of detail in derivations of all equations and results. This information is necessary for students to grasp difficult concepts in physics that are needed to move on to higher level courses. The text is elementary, self contained, and mathematically well-founded, containing a number of problems with detailed solutions to help students to grasp the more difficult theoretical concepts. - Beginning chapters place an emphasis on quantum mechanics - Includes problems with detailed solutions and a number of detailed theoretical derivations at the end of each chapter - Provides a high level of detail in derivations of all equations and results
A timely, applications-driven text in thermodynamics Materials Thermodynamics provides both students and professionals with the in-depth explanation they need to prepare for the real-world application of thermodynamic tools. Based upon an actual graduate course taught by the authors, this class-tested text covers the subject with a broader, more industry-oriented lens than can be found in any other resource available. This modern approach: Reflects changes rapidly occurring in society at large—from the impact of computers on the teaching of thermodynamics in materials science and engineering university programs to the use of approximations of higher order than the usual Bragg-Williams in solution-phase modeling Makes students aware of the practical problems in using thermodynamics Emphasizes that the calculation of the position of phase and chemical equilibrium in complex systems, even when properly defined, is not easy Relegates concepts like equilibrium constants, activity coefficients, free energy functions, and Gibbs-Duhem integrations to a relatively minor role Includes problems and exercises, as well as a solutions manual This authoritative text is designed for students and professionals in materials science and engineering, particularly those in physical metallurgy, metallic materials, alloy design and processing, corrosion, oxidation, coatings, and high-temperature alloys.