Download Free Index Modulation For 5g Wireless Communications Book in PDF and EPUB Free Download. You can read online Index Modulation For 5g Wireless Communications and write the review.

This book presents a thorough examination of index modulation, an emerging 5G modulation technique. It includes representative transmitter and receiver design, optimization, and performance analysis of index modulation in various domains. First, the basic spatial modulation system for the spatial domain is introduced. Then, the development of a generalized pre-coding aided quadrature spatial modulation system as well as a virtual spatial modulation system are presented. For the space-time domain, a range of differential spatial modulation systems are examined, along with the pre-coding design. Both basic and enhanced index modulated OFDM systems for the frequency domain are discussed, focusing on the verification of their strong capabilities in inter-carrier interference mitigation. Finally, key open problems are highlighted and future research directions are considered. Designed for researchers and professionals, this book is essential for anyone working in communications networking, 5G, and system design. Advanced-level students of engineering and computer science interested in efficiency techniques will also find the content valuable.
This book presents the fundamental concepts, recent advancements, and opportunities for future research in various key enabling technologies in next-generation wireless communications. The book serves as a comprehensive source of information in all areas of wireless communications with a particular emphasis on physical (PHY) layer techniques related to 5G wireless systems and beyond. In particular, this book focuses on different emerging techniques that can be adopted in 5G wireless networks. Some of those techniques include massive-MIMO, mm-Wave communications, spectrum sharing, device-to-device (D2D) and vehicular to anything (V2X) communications, radio-frequency (RF) based energy harvesting, and NOMA. Subsequent chapters cover the fundamentals and PHY layer design aspects of different techniques that can be useful for the readers to get familiar with the emerging technologies and their applications.
Wireless networking technologies are witnessed to become the integral part of industry, business, entertainment and daily life. Encyclopedia of Wireless Networks is expected to provide comprehensive references to key concepts of wireless networks, including research results of historical significance, areas of current interests, and growing directions in the future wireless networks. It can serve as a valuable and authoritative literature for students, researchers, engineers, and practitioners who need a quick reference to the subjects of wireless network technology and its relevant applications. Areas covered: 5G Network | Editors: Rahim Tafazolli, Rose Hu Ad hoc Network | Editor: Cheng Li Big Data for Networking | Editor: Song Guo Cellular Network, 2G/3G Network, 4G/LTE Network | Editor: Hsiao-hwa Chen Cognitive Radio Network | Editor: Ning Zhang Cooperative Communications | Editor: Kaoru Ota Cyber Physical Systems | Editor: Shiyan Hu Data Center Network | Editor: Lei Lei Delay Tolerant and Opportunistic Network | Editor: Yuanguo Bi Equalization, Synchronization and Channel Estimation | Editor: Yingying Chen Future Network Architecture | Editor: Wei Quan Game Theory in Wireless Network | Editor: Dusit Niyato Interference Characterization and Mitigation | Editor: Lin Cai Internet of Things | Editors: Xiuzhen Cheng, Wei Cheng Internet of Things and its Applications | Editor: Phone Lin Interworking Heterogeneous Wireless Network | Editor: Ping Wang Medium Access Control | Editors: Hassan Omar, Qiang Ye Millimeter-wave Communications | Editor: Ming Xiao MIMO-based Network | Editor: Prof. Wei Zhang Mobility Management and Models | Editors: Sandra Cespedes, Sangheon Pack Molecular, Biological and Multi-scale Communications | Editor: Adam Noel Network Economics and pricing | Editors: Jianwei Huang, Yuan Luo Network Forensics and surveillance, Fault Tolerance and Reliability | Editor: Hongwei Li Network Measurement and Virtualization | Editor: Yusheng Ji Quality of Service, Quality of Experience and Quality of Protection | Editors: Rui Luis Aguiar, Yu Cheng Resource Allocation and Management | Editors: Junshan Zhang, Nan Cheng Routing and Multi-cast, Router and Switch Design | Editor: Richard Yu Scaling Laws and Fundamental Limits | Editor: Ning Lu Security, Privacy and Trust | Editor: Kui Ren Short Range Communications, RFID and NFC | Editor: Zhiguo Shi Smart Grid Communications | Editor: Vincent W. S. Wong Vehicular Network | Editors: Lian Zhao, Qing Yang Video Streaming | Editor: Zhi Liu Wireless Body Area Network and e-healthcare | Editor: Honggang Wang Wireless Security | Editors: Haojin Zhu, Jian Shen Wireless Sensor Network | Editors: Jiming Chen, Ruilong Deng WLAN and OFDM | Editor: Xianbin Wang
A comprehensive and invaluable guide to 5G technology, implementation and practice in one single volume. For all things 5G, this book is a must-read. Signal processing techniques have played the most important role in wireless communications since the second generation of cellular systems. It is anticipated that new techniques employed in 5G wireless networks will not only improve peak service rates significantly, but also enhance capacity, coverage, reliability , low-latency, efficiency, flexibility, compatibility and convergence to meet the increasing demands imposed by applications such as big data, cloud service, machine-to-machine (M2M) and mission-critical communications. This book is a comprehensive and detailed guide to all signal processing techniques employed in 5G wireless networks. Uniquely organized into four categories, New Modulation and Coding, New Spatial Processing, New Spectrum Opportunities and New System-level Enabling Technologies, it covers everything from network architecture, physical-layer (down-link and up-link), protocols and air interface, to cell acquisition, scheduling and rate adaption, access procedures and relaying to spectrum allocations. All technology aspects and major roadmaps of global 5G standard development and deployments are included in the book. Key Features: Offers step-by-step guidance on bringing 5G technology into practice, by applying algorithms and design methodology to real-time circuit implementation, taking into account rapidly growing applications that have multi-standards and multi-systems. Addresses spatial signal processing for 5G, in particular massive multiple-input multiple-output (massive-MIMO), FD-MIMO and 3D-MIMO along with orbital angular momentum multiplexing, 3D beamforming and diversity. Provides detailed algorithms and implementations, and compares all multicarrier modulation and multiple access schemes that offer superior data transmission performance including FBMC, GFDM, F-OFDM, UFMC, SEFDM, FTN, MUSA, SCMA and NOMA. Demonstrates the translation of signal processing theories into practical solutions for new spectrum opportunities in terms of millimeter wave, full-duplex transmission and license assisted access. Presents well-designed implementation examples, from individual function block to system level for effective and accurate learning. Covers signal processing aspects of emerging system and network architectures, including ultra-dense networks (UDN), software-defined networks (SDN), device-to-device (D2D) communications and cloud radio access network (C-RAN).
Thanks to their considerable advantages, index modulation and orthogonal frequency division multiplexing (OFDM) are considered to be promising candidates for future wireless communications. This book focuses on the index modulation techniques for OFDM communications systems, which allow information to be conveyed not only via constellation symbols, but also by the indices of various transmission entities in OFDM systems, such as signal constellations, spreading codes, and pilots. The book discusses representative transmitter and receiver designs, optimization and performance analysis of index modulation based on various transmission entities. It first introduces readers to constellation-based index modulation via a combinatorial approach, including the classical index modulation scheme and two embodiments of information-guided precoding for OFDM systems. It further discusses constellation-based index modulation via a permutational approach, including the basic, generalized, and diversity-enhancing forms. It then describes how the spreading code is used to design an index modulated spread spectrum for OFDM systems, and the extensions to multi-code and multi-user scenarios. In addition it explores information guided pilot insertion for OFDM systems, followed by applications to carrier phase tracking and channel estimation. Lastly, the book highlights a number of open problems and discusses future research directions in the general field of index modulation. Intended for professionals and researchers in the field of wireless communications, this book is also a valuable resource for advanced-level electrical engineering and computer science students.
Orthogonal Frequency Division Multiplexing for Wireless Communications is an edited volume with contributions by leading authorities in the subject of OFDM. Its coverage consists of principles, important wireless topics (e.g. Synchronization, channel estimation, etc.) and techniques. Included is information for advancing wireless communication in a multipath environment with an emphasis on implementation of OFDM in base stations. Orthogonal Frequency Division Multiplexing for Wireless Communications provides a comprehensive introduction of the theory and practice of OFDM. To facilitate the readers, extensive subject indices and references are given at the end of the book. Even though each chapter is written by different experts, symbols and notations in all chapters of the book are consistent.
This book offers a technical background to the design and optimization of wireless communication systems, covering optimization algorithms for wireless and 5G communication systems design. The book introduces the design and optimization systems which target capacity, latency, and connection density; including Enhanced Mobile Broadband Communication (eMBB), Ultra-Reliable and Low Latency Communication (URLL), and Massive Machine Type Communication (mMTC). The book is organized into two distinct parts: Part I, mathematical methods and optimization algorithms for wireless communications are introduced, providing the reader with the required mathematical background. In Part II, 5G communication systems are designed and optimized using the mathematical methods and optimization algorithms.
5G NR: The Next Generation Wireless Access Technology follows the authors' highly celebrated books on 3G and 4G by providing a new level of insight into 5G NR. After an initial discussion of the background to 5G, including requirements, spectrum aspects and the standardization timeline, all technology features of the first phase of NR are described in detail. Included is a detailed description of the NR physical-layer structure and higher-layer protocols, RF and spectrum aspects and co-existence and interworking with LTE. The book provides a good understanding of NR and the different NR technology components, giving insight into why a certain solution was selected. Content includes: - Key radio-related requirements of NR, design principles, technical features - Details of basic NR transmission structure, showing where it has been inherited from LTE and where it deviates from it, and the reasons why - NR Multi-antenna transmission functionality - Detailed description of the signals and functionality of the initial NR access, including signals for synchronization and system information, random access and paging - LTE/NR co-existence in the same spectrum, the benefits of their interworking as one system - The different aspects of mobility in NR RF requirements for NR will be described both for BS and UE, both for the legacy bands and for the new mm-wave bands - Gives a concise and accessible explanation of the underlying technology and standards for 5G NR radio-access technology - Provides detailed description of the NR physical-layer structure and higher-layer protocols, RF and spectrum aspects and co-existence and interworking with LTE - Gives insight not only into the details of the NR specification but also an understanding of why certain solutions look like they do
A comprehensive overview of the 5G landscape covering technology options, most likely use cases and potential system architectures.
This book presents comprehensive coverage of current and emerging multiple access, random access, and waveform design techniques for 5G wireless networks and beyond. A definitive reference for researchers in these fields, the book describes recent research from academia, industry, and standardization bodies. The book is an all-encompassing treatment of these areas addressing orthogonal multiple access and waveform design, non-orthogonal multiple access (NOMA) via power, code, and other domains, and orthogonal, non-orthogonal, and grant-free random access. The book builds its foundations on state of the art research papers, measurements, and experimental results from a variety of sources.