Download Free Inbreeding And Outbreeding Book in PDF and EPUB Free Download. You can read online Inbreeding And Outbreeding and write the review.

Inbreeding, the mating of close kin, and outbreeding, the mating of distant relatives or unrelated organisms, have long been important subjects to evolutionary biologists. Inbreeding reduces genetic diversity in a population, increasing the likelihood that genetic defects will become widespread and deprive a population of the diversity it may need to cope with its environment. Most plants and animals have evolved behavioral and morphological mechanisms to avoid inbreeding. However, today many endangered species exist only in small, very isolated populations where inbreeding is unavoidable, so it has become a concern for conservationists. In this volume, twenty-six experts in evolution, behavior, and genetics examine the causes and consequences of inbreeding. The authors ask whether inbreeding is as problematic as biologists have thought, under what ecological conditions inbreeding occurs, and whether organisms that inbreed have mechanisms to dampen the anticipated problems of reduced genetic variation. The studies, including theoretical and empirical work on wild and captive populations, demonstrate that many plants and animals inbreed to a greater extent than biologists have thought, with variable effects on individual fitness. Graduate students and researchers in evolutionary biology, animal behavior, ecology, and conservation biology will welcome this wide-ranging collection.
The 7-volume Encyclopedia of Biodiversity, Second Edition maintains the reputation of the highly regarded original, presenting the most current information available in this globally crucial area of research and study. It brings together the dimensions of biodiversity and examines both the services it provides and the measures to protect it. Major themes of the work include the evolution of biodiversity, systems for classifying and defining biodiversity, ecological patterns and theories of biodiversity, and an assessment of contemporary patterns and trends in biodiversity. The science of biodiversity has become the science of our future. It is an interdisciplinary field spanning areas of both physical and life sciences. Our awareness of the loss of biodiversity has brought a long overdue appreciation of the magnitude of this loss and a determination to develop the tools to protect our future. Second edition includes over 100 new articles and 226 updated articles covering this multidisciplinary field— from evolution to habits to economics, in 7 volumes The editors of this edition are all well respected, instantly recognizable academics operating at the top of their respective fields in biodiversity research; readers can be assured that they are reading material that has been meticulously checked and reviewed by experts Approximately 1,800 figures and 350 tables complement the text, and more than 3,000 glossary entries explain key terms
A detailed introduction to the genetic and demographic issues relevant to the conservation of fragmented populations.
According to the National Institute of Health, a genome-wide association study is defined as any study of genetic variation across the entire human genome that is designed to identify genetic associations with observable traits (such as blood pressure or weight), or the presence or absence of a disease or condition. Whole genome information, when combined with clinical and other phenotype data, offers the potential for increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care, and ultimately the realization of the promise of personalized medicine. In addition, rapid advances in understanding the patterns of human genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying genetic variants that contribute to health and disease. This burgeoning science merges the principles of statistics and genetics studies to make sense of the vast amounts of information available with the mapping of genomes. In order to make the most of the information available, statistical tools must be tailored and translated for the analytical issues which are original to large-scale association studies. Analysis of Complex Disease Association Studies will provide researchers with advanced biological knowledge who are entering the field of genome-wide association studies with the groundwork to apply statistical analysis tools appropriately and effectively. With the use of consistent examples throughout the work, chapters will provide readers with best practice for getting started (design), analyzing, and interpreting data according to their research interests. Frequently used tests will be highlighted and a critical analysis of the advantages and disadvantage complimented by case studies for each will provide readers with the information they need to make the right choice for their research. Additional tools including links to analysis tools, tutorials, and references will be available electronically to ensure the latest information is available. - Easy access to key information including advantages and disadvantage of tests for particular applications, identification of databases, languages and their capabilities, data management risks, frequently used tests - Extensive list of references including links to tutorial websites - Case studies and Tips and Tricks
The Encyclopedia of Rose Science brings together a wealth of information on the rose, long treasured for its captivating perfumes and splendid colors. Now, more than ever, science plays a central place in the production of this flower at the center of one of the world's biggest floricultural industries. A team of internationally renowned experts has contributed scores of articles, from the history of rose cultivation to discoveries in rose genetics. For researchers and students, as well as commercial rose growers and breeders, the Encyclopedia of Rose Science is an invaluable reference. The Encyclopedia of Rose Science is available online on ScienceDirect. The print edition price for this reference work does not include online access. For more information on pricing for access to the online edition, please review our Licensing Options. The richness and authority of Elsevier reference works is now lent valuable functionality and accessibility through the online launch of Elsevier Reference Works on ScienceDirect. Features: Extensive browsing and searching across subject, thematic, alphabetical, author and cited author indexes - as applicable to the work Basic and advanced search functionality within volumes, parts of volumes, or across the whole work Ability to build, save and re-run searches as well as combine saved searches Internal cross-referencing between articles in the work, plus dynamic linking to journal articles and abstract databases, making navigation flexible and easy All articles are available as full-text HTML files, and as PDF files that can be viewed, downloaded or printed out in their original print format A dedicated Reference Works navigation tab and homepage on ScienceDirect to enable easy linking from your OPAC or library website For more information about the Elsevier Reference Works on ScienceDirect Program, please visit: http://www.info.sciencedirect.com/reference_works. Presents complete, up-to-date information on over 35 subject areas of major importance to rose scientists Encyclopedic format provides for concise, readable entires, easy searches, and extensive cross-references Incorporates MODERN ROSES XI, published by the American Rose Society as International Cultivar Registration Authority for Roses, the most comprehensive list of roses of historical and botanical importance! High quality full-color production, with many figures and tables
The role of parents in shaping the characters of their children, the causes of violence and crime, and the roots of personal unhappiness are central to humanity. Like so many fundamental questions about human existence, these issues all relate to behavioural development. In this lucid and accessible book, eminent biologist Professor Sir Patrick Bateson suggests that the nature/nurture dichotomy we often use to think about questions of development in both humans and animals is misleading. Instead, he argues that we should pay attention to whole systems, rather than to simple causes, when trying to understand the complexity of development. In his wide-ranging approach Bateson discusses why so much behaviour appears to be well-designed. He explores issues such as ‘imprinting’ and its importance to the attachment of offspring to their parents; the mutual benefits that characterise communication between parent and offspring; the importance of play in learning how to choose and control the optimal conditions in which to thrive; and the vital function of adaptability in the interplay between development and evolution. Bateson disputes the idea that a simple link can be found between genetics and behaviour. What an individual human or animal does in its life depends on the reciprocal nature of its relationships with the world about it. This knowledge also points to ways in which an animal’s own behaviour can provide the variation that influences the subsequent course of evolution. This has relevance not only for our scientific approaches to the systems of development and evolution, but also on how humans change institutional rules that have become dysfunctional, or design public health measures when mismatches occur between themselves and their environments. It affects how we think about ourselves and our own capacity for change.
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
This impressive author team brings the wealth of advances in conservation genetics into the new edition of this introductory text, including new chapters on population genomics and genetic issues in introduced and invasive species. They continue the strong learning features for students - main points in the margin, chapter summaries, vital support with the mathematics, and further reading - and now guide the reader to software and databases. Many new references reflect the expansion of this field. With examples from mammals, birds ...
US/Japan meetings on laboratory animal science have been held virtually every year since 1980 under the US/Japan Cooperative Program on Science and Technology. Over the years these meetings have resulted in a number of important documents including the Manual of Microbiologic Monitoring of Laboratory Animals published in 1994 and the article Establishment and Preservation of Reference Inbred Strains of Rats for General Purposes. In addition to these publications, the meetings have been instrumental in increasing awareness of the need for microbiologic monitoring of laboratory rodents and the need for genetic definition and monitoring of mice and rats. In cooperation with the Comparative Medicine section of NCRR/NIH, the ILAR Council and staff are pleased to become the host for this important annual meeting and look forward to participating in future meetings. The support and sponsorship of NCRR (P40 RR 11611) in the United States and the Central Institute for Experimental Animals in Japan are gratefully acknowledged. Bringing together the leading scientists in the field of laboratory animal care has resulted in increased understanding of American and Japanese approaches to laboratory animal science and should continue to strengthen efforts to harmonize approaches aimed at resolving common challenges in the use of animal models for biomedical research and testing. This effort to improve understanding and cooperation between Japan and the United States should also be useful in developing similar interaction with other regions of the world including Europe, Australia, and Southeast Asia.