Download Free In Situ Spectroscopy Of Catalysts Book in PDF and EPUB Free Download. You can read online In Situ Spectroscopy Of Catalysts and write the review.

Helps researchers develop new catalysts for sustainable fueland chemical production Reviewing the latest developments in the field, this bookexplores the in-situ characterization of heterogeneous catalysts,enabling readers to take full advantage of the sophisticatedtechniques used to study heterogeneous catalysts and reactionmechanisms. In using these techniques, readers can learn to improvethe selectivity and the performance of catalysts and how to preparecatalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts featurescontributions from leading experts in the field of catalysis. Itbegins with an introduction to the fundamentals and thencovers: Characterization of electronic and structural properties ofcatalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-raydiffraction, neutron scattering, and pair distribution functionanalysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates withcatalyst surfaces, including infrared spectroscopy, Ramanspectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on thestructural properties of catalysts with techniques that facilitatethe study of surface reactions Throughout the book, detailed examples illustrate how techniquesfor studying catalysts and reaction mechanisms can be applied tosolve a broad range of problems in heterogeneous catalysis.Detailed figures help readers better understand how and why thetechniques discussed in the book work. At the end of each chapter,an extensive set of references leads to the primary literature inthe field. By explaining step by step modern techniques for the in-situcharacterization of heterogeneous catalysts, this book enableschemical scientists and engineers to better understand catalystbehavior and design new catalysts for green, sustainable fuel andchemical production.
In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis is a new reference on in-situ spectroscopic techniques/applications, fundamentals of electrocatalysis at molecule level, and progresses within electrochemical surface science. Presenting both essential background knowledge at graduate level and original research within the fields of spectroscopy, electrochemistry, and surface science. Featuring 15 chapters by prominent worldwide scholars, based on their recent progress in different aspects of in-situ spectroscopy studies, this book will appeal to a wide audience of scientists. In summary this book is highly suitable for graduates learning basic concepts and advanced applications of in-situ spectroscopy, electrocatalysis and electrode adsorptions.* Written by the most active scientists in the fields of spectroscopy, electrochemistry and surface science* Essential background knowledge for graduate students* A modern reference of cutting-edge scientific research
Heterogeneous catalysis has undergone a revolutionary change in the past two decades due to the development of sophisticated characterization methods that provide fundamental information about the catalyst bulk structures, surfaces, and their properties. For the first time, these characterization methods have allowed researchers to "see" the surfaces of catalytic materials, their bulk structures (crystalline as well as amorphous phases), the influence of the process conditions on the catalytic material, as well as the effect of different synthesis methods. This new information has tremendously advanced our understanding of catalytic materials and their properties. These characterization methods have become our "eyes" and are indispensible in the development of new catalytic materials. It is hard to conceive of a modern heterogeneous catalysis activity, be it research or manufacturing, without the aid of these new characterization techniques.
Solid Acids and Bases: Their Catalytic Properties reviews developments in the studies of acidic and basic properties of solids, including the efficacy and special characteristics of solid acid and base catalysts. This book discusses the determination of basic and acidic properties on solid surfaces and relationship between acid strength and acid amount. The structure and acid-base properties of mixed metal oxides and correlation between acid-base properties and catalytic activity and selectivity are also deliberated. This publication is useful to professional chemists and graduate students in the fields of organic, inorganic and physical chemistry, petroleum chemistry and catalysis, including readers interested in the acidic and basic properties on solid surfaces.
The idea for putting together a tutorial on zeolites came originally from my co-editor, Eric Derouane, about 5 years ago. I ?rst met Eric in the mid-1980s when he spent 2 years working for Mobil R&D at our then Corporate lab at Princeton, NJ. He was on the senior technical staff with projects in the synthesis and characterization of new materials. At that time, I managed a group at our Paulsboro lab that was responsible for catalyst characterization in support of our catalyst and process development efforts, and also had a substantial group working on new material synthesis. Hence, our interests overlapped considerably and we met regularly. After Eric moved back to Namur (initially), we maintained contact, and in the 1990s, we met a number of times in Europe on projects of joint interest. It was after I retired from ExxonMobil in 2002 that we began to discuss the tutorial concept seriously. Eric had (semi-)retired and lived on the Algarve, the southern coast of Portugal. In January 2003, my wife and I spent 3 weeks outside of Lagos, and I worked parts of most days with Eric on the proposed content of the book. We decided on a comprehensive approach that ultimately amounted to some 20+ chapters covering all of zeolite chemistry and catalysis and gave it the title Zeolite Chemistry and Catalysis: An integrated Approach and Tutorial.
Luminescence Thermometry: Methods, Materials, and Applications presents the state-of-the art applications of luminescence thermometry, giving a detailed explanation of luminescence spectroscopic schemes for the read-out of temperature, while also describing the diverse materials that are capable of sensing temperature via luminescence. Chapters cover the fundamentals of temperature, traditional thermometers and their figures of merit, a concise description of optical thermometry methods, luminescence and instrumentation, and an explanation of the ways in which increases in temperature quench luminescence. Additional sections focus on materials utilized for luminescence thermometry and the broad range of applications for luminescence thermometry, including temperature measurement at the nanoscale and the application of multifunctional luminescent materials. - Provides an overview of luminescence thermometry applications, including high-temperature, biomedical, nanoscale and multifunctional - Delves into luminescence thermometry by materials group, including Rare-earth and transition Metal Ion Doped, Semiconductors, Quantum Dots and Organic materials - Gives a concise introduction of the latest methods of temperature measurement, including luminescence spectroscopic schemes and methods of analysis
X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x-ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x-ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X-ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X-ray absorption experiments, and how to analyze the details of the resulting spectra. X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications: Combines the theory, instrumentation and applications of x-ray absorption and emission spectroscopies which offer unique diagnostics to study almost any object in the Universe. Is the go-to reference book in the subject for all researchers across multi-disciplines since intense beams from modern sources have revolutionized x-ray science in recent years Is relevant to students, postdocurates and researchers working on x-rays and related synchrotron sources and applications in materials, physics, medicine, environment/geology, and biomedical materials
to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth.
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.