Download Free In Situ Quantification Of Ice Rheology And Direct Measurement Of The Raymond Effect At Summit Greenland Using A Phase Sensitive Radar Book in PDF and EPUB Free Download. You can read online In Situ Quantification Of Ice Rheology And Direct Measurement Of The Raymond Effect At Summit Greenland Using A Phase Sensitive Radar and write the review.

The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the Planetary Ices science community, this book aims to achieve direct dialog and foster focused collaborations among the observational, modeling, and laboratory research communities.
Remote sensing data are now the primary sources for observing Earth and the Universe. Data inversion and assimilation techniques are the main tools for estimating and predicting the geophysical parameters that characterize the evolution of our planet and the Universe, using remote sensing data. Inversion and Data Assimilation in Remote Sensing explores recent advances in the inversion and assimilation of remote sensing data. It presents traditional and current neural network methods, as well as a number of topics where these methods have been developed or adapted to suit the specific nature of the field. The assimilation section covers prediction problems in volcanology and glaciology. Lastly, the inversion section covers biomass inversion using SAR images, bio-physio-hydrological inversion in coastal areas using multi- and hyperspectral images, and astrophysical inversion using telescope data.
The first complete account of the physics of the creep and fracture of ice, for graduates, engineers and scientists.
Antarctica, the sixth continent, was discovered more than 160 years ago. Since then this large, mysterious continent of ice and penguins has attracted world interest. Scientific expeditions from various countries have begun to study the geographical and natural conditions of the icy continent. Systematic and comprehensive inves tigations in the Antarctic started in the middle of our century. In 1956 the First Soviet Antarctic Expedition headed to the coast of Antarctica. Their program included studies of the atmosphere, hydrosphere and cryosphere. Thirty years have since passed. Scientists have unveiled many secrets of Antarctica: significant geophysical processes have been investigated, and a large body of new information on the Antarctic weather, Southern Ocean hydrology and Antarctic glaciers has been obtained. We can now claim that the horizons of polar geo physics, oceanology, and particularly glaciology, have expanded. Scientific inves tigators have obtained new information about all Antarctic regions and thus have created the opportunity to use the Antarctic in the interests of mankind.
Glacier Science and Environmental Change is an authoritative and comprehensive reference work on contemporary issues in glaciology. It explores the interface between glacier science and environmental change, in the past, present, and future. Written by the world’s foremost authorities in the subject and researchers at the scientific frontier where conventional wisdom of approach comes face to face with unsolved problems, this book provides: state-of-the-art reviews of the key topics in glaciology and related disciplines in environmental change cutting-edge case studies of the latest research an interdisciplinary synthesis of the issues that draw together the research efforts of glaciologists and scientists from other areas such as geologists, hydrologists, and climatologists color-plate section (with selected extra figures provided in color at www.blackwellpublishing.com/knight). The topics in this book have been carefully chosen to reflect current priorities in research, the interdisciplinary nature of the subject, and the developing relationship between glaciology and studies of environmental change. Glacier Science and Environmental Change is essential reading for advanced undergraduates, postgraduate research students, and professional researchers in glaciology, geology, geography, geophysics, climatology, and related disciplines.
Society today may be more vulnerable to global-scale, long-term, climate change than ever before. Even without any human influence, past records show that climate can be expected to continue to undergo considerable change over decades to centuries. Measures for adaption and mitigation will call for policy decisions based on a sound scientific foundation. Better understanding and prediction of climate variations can be achieved most efficiently through a nationally recognized "dec-cen" science plan. This book articulates the scientific issues that must be addressed to advance us efficiently toward that understanding and outlines the data collection and modeling needed.
Polar Remote Sensing is a two-volume work providing a comprehensive, multidisciplinary discussion of the applications of satellite sensing. Volume 2 focuses on the ice sheets, icebergs, and interactions between ice sheets and the atmosphere and ocean. It contains information about the applications of satellite remote sensing in all relevant polar related disciplines, including glaciology, meteorology, climate and radiation balance and oceanogaraphy. It also provides a brief review of the state-of-the-art of each discipline, including current issues and questions. Various passive and active remote sensor types are discussed, and the book then concentrates on specific geophysical applications. Its interdisciplinary approach means that major advances and publications are highlighted. Polar Remote Sensing: Ice Sheets summarizes fundamental principles of detectors, imaging and geophysical product retrieval includes a chapter on the important new field of satellite synthetic-aperture radar interferometry is a "one stop shop" for polar remote sensing information contains significant new information on the Earth's polar regions describes sophisticated groundbased remote sensing applications with specific reference to their use in polar regions.
The new Second Edition of Glacial Geology provides a modern, comprehensive summary of glacial geology and geomorphology. It is has been thoroughly revised and updated from the original First Edition. This book will appeal to all students interested in the landforms and sediments that make up glacial landscapes. The aim of the book is to outline glacial landforms and sediments and to provide the reader with the tools required to interpret glacial landscapes. It describes how glaciers work and how the processes of glacial erosion and deposition which operate within them are recorded in the glacial landscape. The Second Edition is presented in the same clear and concise format as the First Edition, providing detailed explanations that are not cluttered with unnecessary detail. Additions include a new chapter on Glaciations around the Globe, demonstrating the range of glacial environments present on Earth today and a new chapter on Palaeoglaciology, explaining how glacial landforms and sediments are used in ice-sheet reconstructions. Like the original book, text boxes are used throughout to explain key concepts and to introduce students to case study material from the glacial literature. Newly updated sections on Further Reading are also included at the end of each chapter to point the reader towards key references. The book is illustrated throughout with colour photographs and illustrations.
The Global Geodetic Observing System (GGOS) has been established by the Int- national Association of Geodesy (IAG) in order to integrate the three fundamental areas of geodesy, so as to monitor geodetic parameters and their temporal varia- ?9 tions, in a global reference frame with a target relative accuracy of 10 or b- ter. These areas, often called ‘pillars’, deal with the determination and evolution of (a) the Earth’s geometry (topography, bathymetry, ice surface, sea level), (b) the Earth’s rotation and orientation (polar motion, rotation rate, nutation, etc. ), and (c) the Earth’s gravity eld (gravity, geoid). Therefore, Earth Observation on a global scale is at the heart of GGOS’s activities, which contributes to Global Change - search through the monitoring, as well as the modeling, of dynamic Earth processes such as, for example, mass and angular momentum exchanges, mass transport and ocean circulation, and changes in sea, land and ice surfaces. To achieve such an - bitious goal, GGOS relies on an integrated network of current and future terrestrial, airborne and satellite systems and technologies. These include: various positioning, navigation, remote sensing and dedicated gravity and altimetry satellite missions; global ground networks of VLBI, SLR, DORIS, GNSS and absolute and relative gravity stations; and airborne gravity, mapping and remote sensing systems.
This updated and expanded version of the second edition explains the physical principles underlying the behaviour of glaciers and ice sheets. The text has been revised in order to keep pace with the extensive developments which have occurred since 1981. A new chapter, of major interest, concentrates on the deformation of subglacial till. The book concludes with a chapter on information regarding past climate and atmospheric composition obtainable from ice cores.