Download Free In Silico Toxicology Book in PDF and EPUB Free Download. You can read online In Silico Toxicology and write the review.

This book defines the use of computational approaches to predict the environmental toxicity and human health effects of organic chemicals.
This fully updated book explores all-new and revised protocols involving the use of in silico models, particularly with regard to pharmaceuticals. Divided into five sections, the volume covers the modeling of pharmaceuticals in the body, toxicity data for modeling purposes, in silico models for multiple endpoints, a number of platforms for evaluating pharmaceuticals, as well as an exploration of challenges, both scientific and sociological. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and implementation advice necessary for successful results. Authoritative and comprehensive, In Silico Methods for Predicting Drug Toxicity, Second Edition aims to guide the reader through the correct procedures needed to harness in silico models, a field which now touches a wide variety of research specialties.
Focusing on phytochemicals and their potential for drug discovery, this book offers a comprehensive resource on poisonous plants and their applications in chemistry and in pharmacology. Provides a comprehensive resource on phytotoxins, covering historical perspectives, modern applications, and their potential in drug discovery Covers the mechanisms, benefits, risks and management protocols of phytotoxins in a scientific laboratory and the usefulness in drug discovery Presents chapters in a carefully designed, clear order, making it an ideal resource for the academic researcher or the industry professional at any stage in their career
CHEMOMETRICS AND CHEMINFORMATICS IN AQUATIC TOXICOLOGY Explore chemometric and cheminformatic techniques and tools in aquatic toxicology Chemometrics and Cheminformatics in Aquatic Toxicology delivers an exploration of the existing and emerging problems of contamination of the aquatic environment through various metal and organic pollutants, including industrial chemicals, pharmaceuticals, cosmetics, biocides, nanomaterials, pesticides, surfactants, dyes, and more. The book discusses different chemometric and cheminformatic tools for non-experts and their application to the analysis and modeling of toxicity data of chemicals to various aquatic organisms. You’ll learn about a variety of aquatic toxicity databases and chemometric software tools and webservers as well as practical examples of model development, including illustrations. You’ll also find case studies and literature reports to round out your understanding of the subject. Finally, you’ll learn about tools and protocols including machine learning, data mining, and QSAR and ligand-based chemical design methods. Readers will also benefit from the inclusion of: A thorough introduction to chemometric and cheminformatic tools and techniques, including machine learning and data mining An exploration of aquatic toxicity databases, chemometric software tools, and webservers Practical examples and case studies to highlight and illustrate the concepts contained within the book A concise treatment of chemometric and cheminformatic tools and their application to the analysis and modeling of toxicity data Perfect for researchers and students in chemistry and the environmental and pharmaceutical sciences, Chemometrics and Cheminformatics in Aquatic Toxicology will also earn a place in the libraries of professionals in the chemical industry and regulators whose work involves chemometrics.
The sophistication of modelling and simulation technologies have improved dramatically over the past decade and their applications in toxicity prediction and risk assessment are of critical importance. The integration of predictive toxicology approaches will become increasingly necessary as industrial chemicals advance and as new pharmaceuticals enter the market. In this comprehensive discussion of predictive toxicology and its applications, leading experts express their views on the technologies currently available and the potential for future developments. The book covers a wide range of topics including in silico, in vitro and in vivo approaches that are being used in the safety assessment of chemical substances. It reflects the growing and urgent need to strengthen and improve our ability to predict the safety and risks posed by industrial and pharmaceutical chemicals in humans. The reader will find extensive information on the use of current animal models used for various toxicities and target mediated toxicities. Also discussed are the recent regulatory initiatives to improve the safety assessment of chemicals. The book provides an expert and comprehensive discussion on the current status and future directions of predictive toxicology and its application. The various chapters in the book also reflect the growing need for improvements in our technologies and abilities to predict toxicities of pharmaceutical and industrial chemicals to ensure product safety and protect public health.
The aim of this book is to provide the scientific background to using the formation of chemical categories, or groups, of molecules to allow for read-across i.e. the prediction of toxicity from chemical structure. It covers the scientific basis for this approach to toxicity prediction including the methods to group compounds (structural analogues and / or similarity, mechanism of action) and the tools to achieve this. The approaches to perform read-across within a chemical category are also described. Chemical Toxicity Prediction provides concise practical guidance for those wishing to apply these methods (in risk / hazard assessment) and will be illustrated with case studies. This is the first book that addresses the concept of category formation and read-across for toxicity prediction specifically. This topic has really taken off in the past few years due to concerns over dealing with the REACH legislation and also due to the availability of the OECD (Q)SAR Toolbox. Much (lengthy and complex) guidance is available on category formation e.g. from the OECD and, to a lesser extent, the European Chemicals Agency but there is no one single source of information that covers all techniques in a concise user-friendly format.
The History of Alternative Test Methods in Toxicology uses a chronological approach to demonstrate how the use of alternative methods has evolved from their conception as adjuncts to traditional animal toxicity tests to replacements for them. This volume in the History of Toxicology and Environmental Health series explores the history of alternative test development, validation, and use, with an emphasis on humanity and good science, in line with the Three Rs (Replacement,Reduction, Refinement) concept expounded by William Russell and Rex Burch in 1959 in their now classic volume, The Principles of Humane Experimental Technique. The book describes the historical development of technologies that have influenced the application of alternatives in toxicology and safety testing. These range from single cell monocultures to sophisticated, miniaturised and microfluidic organism-on-a-chip devices, and also include molecular modelling, chemoinformatics and QSAR analysis, and the use of stem cells, tissue engineering and hollow fibre bioreactors. This has been facilitated by the wider availability of human tissues, advances in tissue culture, analytical and diagnostic methods, increases in computational processing, capabilities, and a greater understanding of cell biology and molecular mechanisms of toxicity. These technological developments have enhanced the range and information content of the toxicity endpoints detected, and therefore the relevance of test systems and data interpretation, while new techniques for non-invasive diagnostic imaging and high resolution detection methods have permitted an increased role for human studies. Several key examples of how these technologies are being harnessed to meet 21st century safety assessment challenges are provided, including their deployment in integrated testing schemes in conjunction with kinetic modelling, and in specialized areas, such as inhalation toxicity studies. The History of Alternative Test Methods in Toxicology uses a chronological approach to demonstrate how the use of alternative methods has evolved from their conception as adjuncts to traditional animal toxicity tests to replacements for them. This volume in the History of Toxicology and Environmental Health series explores the history of alternative test development, validation, and use, with an emphasis on humanity and good science, in line with the Three Rs (Replacement, Reduction, Refinement) concept expounded by William Russell and Rex Burch in 1959 in their now-classic volume, The Principles of Humane Experimental Technique. The book describes the historical development of technologies that have influenced the application of alternatives in toxicology and safety testing. These range from single cell monocultures to sophisticated miniaturised and microfluidic organism-on-a-chip devices, and also include molecular modelling, chemoinformatics and QSAR analysis, and the use of stem cells, tissue engineering and hollow fibre bioreactors. This has been facilitated by the wider availability of human tissues, advances in tissue culture, analytical and diagnostic methods, increases in computational processing capabilities, and a greater understanding of cell biology and molecular mechanisms of toxicity. These technological developments have enhanced the range and information content of the toxicity endpoints detected, and therefore the relevance of test systems and data interpretation, while new techniques for non-invasive diagnostic imaging and high resolution detection methods have permitted an increased role for human studies. Several key examples of how these technologies are being harnessed to meet 21st century safety assessment challenges are provided, including their deployment in integrated testing schemes in conjunction with kinetic modelling, and in specialised areas, such as inhalation toxicity studies.
Green toxicology is an integral part of green chemistry. One of the key goals of green chemistry is to design less toxic chemicals. Therefore, an understanding of toxicology and hazard assessment is important for any chemist working in green chemistry, but toxicology is rarely part of most chemists' education. As a consequence, chemists lack the toxicological lens necessary to view chemicals in order to design safer substitutions. This book seeks to fill that gap and demonstrate how a basic understanding of toxicology, as well as the tools of in silico and in vitro toxicology, can be an integral part of green chemistry. R&D chemists, product stewards, and toxicologists who work in the field of sustainability, can all benefit from integrating green toxicology principles into their work. Topics include in silico tools for hazard assessment, toxicity testing, and lifecycle considerations, this book aims to act as a bridge between green toxicologists and green chemists.
Dieses Buch ist ein wichtiges Referenzwerk für Toxikologen in vielen Bereichen und bietet eine umfassende Analyse molekular Modellansätze und Strategien der Risikobewertung von pharmazeutischen und Umweltchemikalien. - Zeigt, was mit rechnergestützter Toxikologie aktuell erreicht werden kann, und wirft einen Blick auf zukünftige Entwicklungen. - Gibt Antworten zu Themen wie Datenquellen, Datenpflege, Behandlung, Modellierung und Interpretation kritischer Endpunkte im Hinblick auf Gefahrenbewertungen im 21. Jahrhundert. - Bündelt herausragende Konzepte und das Wissen führender Autoren in einem einzigartigen Referenzwerk. - Untersucht detailliert QSAR-Modelle, Eigenschaften physiochemischer Arzneistoffe, strukturbasiertes Drug Targeting, die Bewertung chemischer Mischungen und Umweltmodelle. - Behandelt zusätzlich die Sicherheitsbewertung von Verbraucherprodukten und den Bereich chemische Abwehr und bietet Kapitel zu Open-Source-Toxikologie und Big Data.
This book presents the peer-reviewed proceedings of the 2nd International Conference on Computational and Bioengineering (CBE 2020) jointly organized in virtual mode by the Department of Computer Science and the Department of BioScience & Sericulture, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh, India, during 4–5 December 2020. The book includes the latest research on advanced computational methodologies such as artificial intelligence, data mining and data warehousing, cloud computing, computational intelligence, soft computing, image processing, Internet of things, cognitive computing, wireless networks, social networks, big data analytics, machine learning, network security, computer networks and communications, bioinformatics, biocomputing/biometrics, computational biology, biomaterials, bioengineering, and medical and biomedical informatics.