Download Free In Memory Data Management Book in PDF and EPUB Free Download. You can read online In Memory Data Management and write the review.

In the last fifty years the world has been completely transformed through the use of IT. We have now reached a new inflection point. This book presents, for the first time, how in-memory data management is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. This book provides the technical foundation for processing combined transactional and analytical operations in the same database. In the year since we published the first edition of this book, the performance gains enabled by the use of in-memory technology in enterprise applications has truly marked an inflection point in the market. The new content in this second edition focuses on the development of these in-memory enterprise applications, showing how they leverage the capabilities of in-memory technology. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes.
In the last 50 years the world has been completely transformed through the use of IT. We have now reached a new inflection point. Here we present, for the first time, how in-memory computing is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Analytical data resides in warehouses, synchronized periodically with transactional systems. This separation makes flexible, real-time reporting on current data impossible. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. We describe techniques that allow analytical and transactional processing at the speed of thought and enable new ways of doing business. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes by leveraging in-memory computing.
Recent achievements in hardware and software development, such as multi-core CPUs and DRAM capacities of multiple terabytes per server, enabled the introduction of a revolutionary technology: in-memory data management. This technology supports the flexible and extremely fast analysis of massive amounts of enterprise data. Professor Hasso Plattner and his research group at the Hasso Plattner Institute in Potsdam, Germany, have been investigating and teaching the corresponding concepts and their adoption in the software industry for years. This book is based on an online course that was first launched in autumn 2012 with more than 13,000 enrolled students and marked the successful starting point of the openHPI e-learning platform. The course is mainly designed for students of computer science, software engineering, and IT related subjects, but addresses business experts, software developers, technology experts, and IT analysts alike. Plattner and his group focus on exploring the inner mechanics of a column-oriented dictionary-encoded in-memory database. Covered topics include - amongst others - physical data storage and access, basic database operators, compression mechanisms, and parallel join algorithms. Beyond that, implications for future enterprise applications and their development are discussed. Step by step, readers will understand the radical differences and advantages of the new technology over traditional row-oriented, disk-based databases. In this completely revised 2nd edition, we incorporate the feedback of thousands of course participants on openHPI and take into account latest advancements in hard- and software. Improved figures, explanations, and examples further ease the understanding of the concepts presented. We introduce advanced data management techniques such as transparent aggregate caches and provide new showcases that demonstrate the potential of in-memory databases for two diverse industries: retail and life sciences.
This book explores the implications of non-volatile memory (NVM) for database management systems (DBMSs). The advent of NVM will fundamentally change the dichotomy between volatile memory and durable storage in DBMSs. These new NVM devices are almost as fast as volatile memory, but all writes to them are persistent even after power loss. Existing DBMSs are unable to take full advantage of this technology because their internal architectures are predicated on the assumption that memory is volatile. With NVM, many of the components of legacy DBMSs are unnecessary and will degrade the performance of data-intensive applications. We present the design and implementation of DBMS architectures that are explicitly tailored for NVM. The book focuses on three aspects of a DBMS: (1) logging and recovery, (2) storage and buffer management, and (3) indexing. First, we present a logging and recovery protocol that enables the DBMS to support near-instantaneous recovery. Second, we propose a storage engine architecture and buffer management policy that leverages the durability and byte-addressability properties of NVM to reduce data duplication and data migration. Third, the book presents the design of a range index tailored for NVM that is latch-free yet simple to implement. All together, the work described in this book illustrates that rethinking the fundamental algorithms and data structures employed in a DBMS for NVM improves performance and availability, reduces operational cost, and simplifies software development.
This book examines for the first time, the ways that in-memory computing is changing the way businesses are run. The authors describe techniques that allow analytical and transactional processing at the speed of thought and enable new ways of doing business.
From the Foreword: "Big Data Management and Processing is [a] state-of-the-art book that deals with a wide range of topical themes in the field of Big Data. The book, which probes many issues related to this exciting and rapidly growing field, covers processing, management, analytics, and applications... [It] is a very valuable addition to the literature. It will serve as a source of up-to-date research in this continuously developing area. The book also provides an opportunity for researchers to explore the use of advanced computing technologies and their impact on enhancing our capabilities to conduct more sophisticated studies." ---Sartaj Sahni, University of Florida, USA "Big Data Management and Processing covers the latest Big Data research results in processing, analytics, management and applications. Both fundamental insights and representative applications are provided. This book is a timely and valuable resource for students, researchers and seasoned practitioners in Big Data fields. --Hai Jin, Huazhong University of Science and Technology, China Big Data Management and Processing explores a range of big data related issues and their impact on the design of new computing systems. The twenty-one chapters were carefully selected and feature contributions from several outstanding researchers. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem solving techniques for a range of platforms. It serves as a repository of paradigms, technologies, and applications that target different facets of big data computing systems. The first part of the book explores energy and resource management issues, as well as legal compliance and quality management for Big Data. It covers In-Memory computing and In-Memory data grids, as well as co-scheduling for high performance computing applications. The second part of the book includes comprehensive coverage of Hadoop and Spark, along with security, privacy, and trust challenges and solutions. The latter part of the book covers mining and clustering in Big Data, and includes applications in genomics, hospital big data processing, and vehicular cloud computing. The book also analyzes funding for Big Data projects.
This book describes the next generation of business applications in the innovative new SAP Business Suite 4 SAP HANA (SAP S/4HANA), exploiting the revolutionary capabilities of the SAP HANA in-memory database. Numerous real-world examples are presented illustrating the disruptive potential of this technology and the quantum leap it has facilitated in terms of simplicity, flexibility, and speed for new applications. The intuitive structure of this book offers a straightforward business perspective grounded in technology in order to enable valuable business insights drawn from the wealth of real-world experience of the book’s two authors, both prominent figures in the field of business application systems: Hasso Plattner and Bernd Leukert. Hasso Plattner is the co-founder of SAP and the founder of the Hasso Plattner Institute, affiliated with the University of Potsdam, Germany. Bernd Leukert is a member of the SAP Executive Board and the Global Managing Board of SAP.
A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin
This book constitutes the thoroughly refereed post conference proceedings of the First and Second International Workshops on In Memory Data Management and Analysis held in Riva del Garda, Italy, August 2013 and Hangzhou, China, in September 2014. The 11 revised full papers were carefully reviewed and selected from 18 submissions and cover topics from main-memory graph analytics platforms to main-memory OLTP applications.
OpenVMS Alpha Internals and Data Structures: Memory Management is an updateto selected parts of the book OpenVMS AXP Internals and Data Structures Version 1.5 (Digital Press, 1994). This book covers the extensions to the memory management subsystem of OpenVMS Alpha to allow the operating system and applications to access 64 bits of address space. It emphasizes system data structures and their manipulation by paging and swapping routines and related system services.It also describes management of dynamic memory, such as nonpaged pool, and support for nonuniform memory access (NUMA) platforms.This book is intended for systems programmers, technical consultants, application designers, and other computer progressions interested in learning the details of the OpenVMS executive. Teachers and students of graduate and advanced undergraduate courses in operating systems will find this book a valuable study in how theory and practice are resolved in a complex commercialoperating system.THE definitive reference describing how the OpenVMS kernel worksWritten by a top authority on OpenVMS systemsCovers the latest version of OpenVMS