Download Free Impulsive Synchronization Of Complex Dynamical Networks Book in PDF and EPUB Free Download. You can read online Impulsive Synchronization Of Complex Dynamical Networks and write the review.

This book is mainly focused on the global impulsive synchronization of complex dynamical networks with different types of couplings, such as general state coupling, nonlinear state coupling, time-varying delay coupling, derivative state coupling, proportional delay coupling and distributed delay coupling. Studies on impulsive synchronization of complex dynamical networks have attracted engineers and scientists from various disciplines, such as electrical engineering, mechanical engineering, mathematics, network science, system engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of network synchronization and the significant influence of impulsive control in the design and optimization of complex networks. The primary audience for the book would be the scholars and graduate students whose research topics including the network science, control theory, applied mathematics, system science and so on.
In recent years, complex-valued neural networks have widened the scope of application in optoelectronics, imaging, remote sensing, quantum neural devices and systems, spatiotemporal analysis of physiological neural systems, and artificial neural information processing. In this first-ever book on complex-valued neural networks, the most active scientists at the forefront of the field describe theories and applications from various points of view to provide academic and industrial researchers with a comprehensive understanding of the fundamentals, features and prospects of the powerful complex-valued networks.
This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or even the heart muscle, to name but a few. The book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.
A comprehensive treatment of model-based fuzzy control systems This volume offers full coverage of the systematic framework for the stability and design of nonlinear fuzzy control systems. Building on the Takagi-Sugeno fuzzy model, authors Tanaka and Wang address a number of important issues in fuzzy control systems, including stability analysis, systematic design procedures, incorporation of performance specifications, numerical implementations, and practical applications. Issues that have not been fully treated in existing texts, such as stability analysis, systematic design, and performance analysis, are crucial to the validity and applicability of fuzzy control methodology. Fuzzy Control Systems Design and Analysis addresses these issues in the framework of parallel distributed compensation, a controller structure devised in accordance with the fuzzy model. This balanced treatment features an overview of fuzzy control, modeling, and stability analysis, as well as a section on the use of linear matrix inequalities (LMI) as an approach to fuzzy design and control. It also covers advanced topics in model-based fuzzy control systems, including modeling and control of chaotic systems. Later sections offer practical examples in the form of detailed theoretical and experimental studies of fuzzy control in robotic systems and a discussion of future directions in the field. Fuzzy Control Systems Design and Analysis offers an advanced treatment of fuzzy control that makes a useful reference for researchers and a reliable text for advanced graduate students in the field.
Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.
This monograph discusses the issues of stability and the control of impulsive systems on hybrid time domains, with systems presented on discrete-time domains, continuous-time domains, and hybrid-time domains (time scales). Research on impulsive systems has recently attracted increased interest around the globe, and significant progress has been made in the theory and application of these systems. This book introduces recent developments in impulsive systems and fundamentals of various types of differential and difference equations. It also covers studies in stability related to time delays and other various control applications on the different impulsive systems. In addition to the analyses presented on dynamical systems that are with or without delays or impulses, this book concludes with possible future directions pertaining to this research.
Matrices are used in many areas including statistics, natural sciences, econometrics, maths & engineering. This book provides a collection of results for easy reference in one source, along with a comprehensive dictionary of matrices & related terms.
This book intends to introduce some recent results on passivity of complex dynamical networks with single weight and multiple weights. The book collects novel research ideas and some definitions in complex dynamical networks, such as passivity, output strict passivity, input strict passivity, finite-time passivity, and multiple weights. Furthermore, the research results previously published in many flagship journals are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers and graduate students in Engineering and Mathematics who wish to study the passivity of complex dynamical networks.
This book and its companion volumes, LNCS vols. 5551, 5552 and 5553, constitute the proceedings of the 6th International Symposium on Neural Networks (ISNN 2009), held during May 26–29, 2009 in Wuhan, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural n- works and related fields, with a successful sequence of ISNN symposia held in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), and Beijing (2008). Following the tradition of the ISNN series, ISNN 2009 provided a high-level inter- tional forum for scientists, engineers, and educators to present state-of-the-art research in neural networks and related fields, and also to discuss with international colleagues on the major opportunities and challenges for future neural network research. Over the past decades, the neural network community has witnessed tremendous - forts and developments in all aspects of neural network research, including theoretical foundations, architectures and network organizations, modeling and simulation, - pirical study, as well as a wide range of applications across different domains. The recent developments of science and technology, including neuroscience, computer science, cognitive science, nano-technologies and engineering design, among others, have provided significant new understandings and technological solutions to move the neural network research toward the development of complex, large-scale, and n- worked brain-like intelligent systems. This long-term goal can only be achieved with the continuous efforts of the community to seriously investigate different issues of the neural networks and related fields.