Download Free Improving Durability Of Asphalt Mixes Produced With Reclaimed Asphalt Pavement Rap By Enhancing Binder Blending Book in PDF and EPUB Free Download. You can read online Improving Durability Of Asphalt Mixes Produced With Reclaimed Asphalt Pavement Rap By Enhancing Binder Blending and write the review.

Reclaimed Asphalt Pavement (RAP) has been favoured over virgin materials in the light of the unstable cost of virgin asphalt binders, shortage of quality aggregates, and compelling need to preserve the environment and natural resources. Mixes containing up to 20% RAP are commonly considered to have similar behaviour to virgin mixes. However, during the production process of HMA with RAP, the blending between aged and virgin binders would be partial, which would create heterogeneity in distribution of the aged recycled binder and the soft virgin binder in the HMA-RAP mixes. Hence, it is important to control the blending process between old and new binders to obtain more homogenous mix. Therefore, the main objectives of this research are to examine the kinematics of blending of aged and virgin binders by considering the time-temperature effect during mixing and silo-storage, and assess the thermo-mechanical behaviour of Hot Mix Asphalt (HMA) containing RAP at different blending states. The asphalt mixes used in this research were produced and collected at two plants (Plant 1) and (Plant 2) located in Ontario, Canada. Two Marshall mixes were produced and collected from Plant 1 including a surface course HL-3 containing 15 percent RAP and a base course HL-8 containing 30 percent RAP. These mixes were labelled as 1HL-3 and 1HL-8 respectively. In addition, two Marshall mixes were produced and collected from Plant 2 including a surface course HL-3 containing 20 percent RAP and a base course HL-8 containing 40 percent RAP. These mixes were labelled as 2HL-3 and 2HL-8 respectively. To investigate the impact of storage time on the blending progress and achieving a cohesive final binder, the mix samples were collected as a function of storage time in the silo. The first sampling was done immediately after production (t = 0-hour), and then at several time intervals of silo-storage; i.e., at 1, 4, 8, and 12 hours. In case of Plant 2, the samples were additionally collected after 24-hour of storage time. All samples were then kept in a storage room at 7ʻC until the day of compaction to minimize any further blending between aged and virgin binder. To understand the blending phenomena and its effect on the performance of the pavement, a multi-scale investigation is carried out. The blending was examined in terms of micro-mechanical and rheological properties. The microstructure of the blending zones were examined under The Environmental Scanning Electron Microscope (ESEM). In addition the effect of the silo-storage time on the rheology of the binders was investigated. The results indicate that increasing the interaction time and temperature between the aged and virgin binder significantly results in a better blending. The performance of RAP-HMA with respect to the silo-storage time was examined using Dynamic Modules Test, Thermal Stress Restrained Specimen Test (TSRST), Rutting Test, and Flexural Beam Fatigue Test. The experimental data indicates that samples collected after 12-hour of silo storage exhibited a reduction in the stiffness due to better blending of aged and virgin binder. In addition, the 12-hour samples showed enhancement in their fracture temperature, rutting depth, and fatigue life, accompanied with a better blending between their aged and virgin binder. On the other hand, the samples that collected after 24-hour silo-storage had a higher stiffness in comparison with the 8 and 12-hour samples. Moreover, the AASHTOWare Pavement Mechanistic-Empirical Design was utilized to examine the effect of the 12-hour silo-storage time on the long term performance of the pavements. Four pavement structures have been designed for this purpose. These pavements have the same structure of their granular A, granular B, and the subgrade. Yet, the first layer (surface course and base course) is a silo-storage time-dependent. The long-term field performance prediction indicates a slight improvement with the 12-hour pavements (Plant1 12hrs and Plant2 12hrs). However, it should be noted that AASHTOWare Pavement Mechanistic-Empirical Design does not appear to properly capture the effect of blending in the pavement performance. The collected experimental evidences unveils correlations between time-temperature effects and mixture performance. Based on these findings, the research provides practical recommendations to the professionals of the Canadian asphalt industry for a better use of RAP. Ultimately, this research recommends a 12-hour silo-storage time for the RAP-HMA for better performance and durability of the mixes.
TRB's National Cooperative Highway Research Program (NCHRP) Report 752: Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content describes proposed revisions to the American Association of State Highway and Transportation Officials (AASHTO) R 35, Superpave Volumetric Design for Hot Mix Asphalt, and AASHTO M 323, Superpave Volumetric Mix Design, to accommodate the design of asphalt mixtures with high reclaimed asphalt pavement contents.
The use of a higher percentage of reclaimed asphalt pavement (RAP) in asphalt concrete can lead to developing premature failure of asphalt pavements due to fatigue and/or low-temperature cracking. The incorporation of softening agents in asphalt binders can resolve these problems and enhance pavement durability. This study aims to evaluate the effectiveness of waste-based softening agents for enhancing the properties of asphalt mixes with high RAP contents. Waste cooking oil (WCO), and engine bottom oil (EBO) along with a commercial rejuvenator were investigated in this study. Three types of Performance Grade (PG) binders, each collected from two different sources, used in this study are PG 64-22, PG 70-22, and PG 76-22. These binders blended with different percentages of RAP binder (15, 25, 40, and 60%) were rejuvenated with different dosages (10, 15, and 20%) of the softening agents. Empirical tests (penetration), Acid-number (pH), Superpave tests, Multiple Stress Creep Recovery (MSCR), Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Saturates, Aromatics, Resins, and Asphaltenes (SARA) analysis, and limited mixture performance tests (Texas Boiling) were conducted. The rejuvenated binders showed a significant reduction in the binders' viscosities, resulting in a reduction of production temperatures as well as the brittleness of the hard binders. The fatigue factors of the rejuvenated binders decreased noticeably, indicating the improvement of fatigue cracking resistance. The Bending Beam Rheometer (BBR) results revealed that the rejuvenated binders exhibited a significant reduction in stiffness while increasing the rate of stress relaxation. The chemical analysis results revealed the appearance of some distinct peaks and changes in the % fractions of chemical constituents. The AFM test results agreed with the Superpave test data and showed that morphologies of the rejuvenated binders were changed and nanomechanical properties were altered noticeably. The TBT results showed that the WCO-modified RAP blend showed better performance than EBO. About 10% of WCO was found to be optimum for surface mixes with 25% RAP while EBO was less effective. The findings of this study are expected to help pavement professionals in selecting appropriate rejuvenators in the construction of pavements with high RAP.
The pavement community, including both agencies and industries, is moving toward more sustainable pavement designs and pavement network management. Increasing amounts of recycled materials, both reclaimed asphalt pavement (RAP) and recycled tire rubber, are expected to be used in new pavement construction projects in the future to reduce the use of virgin binder and aggregates. The main concern of using recycled materials in new asphalt pavement is the potential negative effect on the performance. Thus, the primary objective of this dissertation is to improve the current laboratory testing technologies and performance assessment approaches for characterizing the performance-related properties of asphalt mixes containing recycled materials and to improve understanding of how these properties affect the performance of asphalt pavements so that they can be designed and constructed better. A major challenge regarding the use of high RAP content mixes is the differences in the rheological properties of the virgin binder (mixes without RAP) and the blended binder (mixes with RAP). Traditionally, binder blending charts are used to determine the appropriate RAP content in asphalt mixes and the selection of virgin binder grade as part of the Superpave volumetric mix design procedures when RAP is incorporated in the mix. However, producing mixes based on blending charts that require testing of extracted and recovered RAP binders is expensive and hazardous. An alternative test approach for binder blending charts using fine aggregate matrix (FAM) mix testing is presented in this dissertation. The results demonstrated that the proposed approach could estimate the blended binder intermediate and low performance grading temperatures within ±3°C of the measured blended binder performance grading temperatures. Even though the proposed approach is not as accurate as the blending chart method (within ±2°C), it provides both cost and environmental benefits. Currently, the Superpave Performance Grading (PG) system cannot not be used to evaluate the performance-related properties of asphalt rubber binders produced using larger crumb rubber particles (maximum particle size passing 2.36 mm sieve) due to the limitations of parallel plate geometry. With the consideration of more open-graded or gap-graded rubberized hot mix asphalt (RHMA-O and RHMA-G) projects in the future, it is important to be able to perform Superpave PG testing on asphalt rubber binder and to establish performance-based contract acceptance criteria for the production of asphalt rubber binders. The test results indicated that the concentric cylinder geometry is an appropriate alternative geometry to parallel plates for quantifying the properties of asphalt rubber binders and specifically for assessing the high-temperature performance properties of binders containing crumb rubber particles larger than 250 [mu]m. Concerns have been raised with regard to incorporating reclaimed rubberized asphalt pavement (RRAP) into dense-graded new hot mix asphalt (HMA-DG) and RAP into new RHMA-G since the interactions between the virgin binder, age-hardened binder, and recycled tire rubber could considerably affect the rutting, fatigue cracking, and thermal cracking performances of new HMA-DG and RHMA-G. The fundamental differences between RAP and RRAP were identified and the performance of new mixes that contain these recycled materials were evaluated in this study. The experimental results showed that adding RRAP to HMA-DG mixes is ideal to resist rutting and low-temperature cracking based on the changes in mix stiffness. The HMA-DG mixes containing RRAP are better at resisting high tensile strain loadings than mixes containing RAP. In addition, adding RAP to RHMA-G mixes improves the rutting performance but diminishes the cracking performance, and potentially negating the benefits of selecting RHMA-G as an overlay to retard the rate of reflection cracking. Lastly, the effects of rest periods on asphalt fatigue performance considering asphalt thixotropy, non-linearity, self-heating, self-cooling, and steric hardening were also investigated in this research. The experimental test results showed that asphalt thixotropic softening and other biasing effects control the first 10 to 15 percent decrease in stiffness for unmodified binders and 15 to 35 percent decrease in stiffness for modified binders under cyclic loading, and this decrease in stiffness can be recovered with the introduction of rest periods. This means that most of the repeated loadings applied to test specimens within the thixotropic softening range do not caused any fatigue damage but only softening of the materials. Thus, by providing sufficient rest periods within the thixotropic softening range can effectively improve asphalt fatigue performance. Both the thixotropic softening range and the required time for thixotropic recovery (i.e., rest periods) need to be considered in asphalt fatigue test and mechanistic-empirical (ME) design for better evaluation of the true fatigue performance.
Asphalt Pavements contains the proceedings of the International Conference on Asphalt Pavements (Raleigh, North Carolina, USA, 1-5 June 2014), and discusses recent advances in theory and practice in asphalt materials and pavements. The contributions cover a wide range of topics:- Environmental protection and socio-economic impacts- Additives and mo
Recycled materials such as reclaimed asphalt pavement (RAP) have been incorporated into asphalt mixtures for many years. However, their usage has increased over time as they are seen as a way to reduce the cost of asphalt mixtures, save energy, and protect the environment. Similarly, there has been a growing focus on the utilization of recycled asphalt shingles (RAS) in asphalt mixtures, a pursuit undertaken by various state highway agencies. However, unless appropriate precautions are taken, as the proportion of RAP and RAS in the asphalt mixture is raised, the mixture becomes more brittle, leading to a higher risk of cracking and raveling in the asphalt pavement. Furthermore, the mixture becomes less workable and more challenging to compact in the field, increasing the potential for premature field failure. One strategy to incorporate more RAP and RAS into asphalt mixtures involves the use of specialized recycling agents (RAs), known as rejuvenating agents. Over time, asphalt mixtures undergo aging during construction and over the extended service life of asphalt pavements, resulting in the oxidation of the mix and the loss of a significant portion of the maltenes in the binder composition. Maltenes contribute to the softening effect of the binder, and these recycling agents, when used appropriately, are expected to compensate for this reduction in maltenes. The ultimate result of this rebalancing of components is the softening of the aged binder and an improvement in its resistance to cracking. This study investigates the long-term impact of bio-based and petroleum-based recycling agents (RA's) on recycled asphalt binders with varying levels of reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS) content, specifically low (15%) and high (30%) RAP content and 0% and 5% RAS content. The rejuvenated binders underwent short-term and long-term aging through the use of a Rolling Thin Film Oven (RTFO) and Pressure Aging Vessel (PAV), respectively. The performance characteristics of these modified binders at various aging stages were assessed using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The study revealed that all RA's used in this research maintained their effectiveness even after long-term aging, though the degree of effectiveness varied. Additionally, the results indicated that the petroleum-based RA required a higher dosage to achieve the same effect as the bio-based RA's. The findings from this research also demonstrated that when rejuvenators are added to mixtures with a high RAP content or a combination of RAP and RAS, the mixture's performance is enhanced in terms of low-temperature cracking and fatigue cracking. Nevertheless, it is crucial to extend this work to field pilot projects to ensure the effective application of these rejuvenating products.
This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
The urgent need for infrastructure rehabilitation and maintenance has led to a rise in the levels of research into bituminous materials. Breakthroughs in sustainable and environmentally friendly bituminous materials are certain to have a significant impact on national economies and energy sustainability. This book will provide a comprehensive review on recent advances in research and technological developments in bituminous materials. Opening with an introductory chapter on asphalt materials and a section on the perspective of bituminous binder specifications, Part One covers the physiochemical characterisation and analysis of asphalt materials. Part Two reviews the range of distress (damage) mechanisms in asphalt materials, with chapters covering cracking, deformation, fatigue cracking and healing of asphalt mixtures, as well as moisture damage and the multiscale oxidative aging modelling approach for asphalt concrete. The final section of this book investigates alternative asphalt materials. Chapters within this section review such aspects as alternative binders for asphalt pavements such as bio binders and RAP, paving with asphalt emulsions and aggregate grading optimization. - Provides an insight into advances and techniques for bituminous materials - Comprehensively reviews the physicochemical characteristics of bituminous materials - Investigate asphalt materials on the nano-scale, including how RAP/RAS materials can be recycled and how asphalt materials can self-heal and rejuvenator selection