Download Free Improving Census Accuracy Book in PDF and EPUB Free Download. You can read online Improving Census Accuracy and write the review.

This open access book describes the differences in US census coverage, also referred to as “differential undercount”, by showing which groups have the highest net undercounts and which groups have the greatest undercount differentials, and discusses why such undercounts occur. In addition to focusing on measuring census coverage for several demographic characteristics, including age, gender, race, Hispanic origin status, and tenure, it also considers several of the main hard-to-count populations, such as immigrants, the homeless, the LBGT community, children in foster care, and the disabled. However, given the dearth of accurate undercount data for these groups, they are covered less comprehensively than those demographic groups for which there is reliable undercount data from the Census Bureau. This book is of interest to demographers, statisticians, survey methodologists, and all those interested in census coverage.
The goal of eliminating disparities in health care in the United States remains elusive. Even as quality improves on specific measures, disparities often persist. Addressing these disparities must begin with the fundamental step of bringing the nature of the disparities and the groups at risk for those disparities to light by collecting health care quality information stratified by race, ethnicity and language data. Then attention can be focused on where interventions might be best applied, and on planning and evaluating those efforts to inform the development of policy and the application of resources. A lack of standardization of categories for race, ethnicity, and language data has been suggested as one obstacle to achieving more widespread collection and utilization of these data. Race, Ethnicity, and Language Data identifies current models for collecting and coding race, ethnicity, and language data; reviews challenges involved in obtaining these data, and makes recommendations for a nationally standardized approach for use in health care quality improvement.
The usefulness of the U.S. decennial census depends critically on the accuracy with which individual people are counted in specific housing units, at precise geographic locations. The 2000 and other recent censuses have relied on a set of residence rules to craft instructions on the census questionnaire in order to guide respondents to identify their correct "usual residence." Determining the proper place to count such groups as college students, prisoners, and military personnel has always been complicated and controversial; major societal trends such as placement of children in shared custody arrangements and the prevalence of "snowbird" and "sunbird" populations who regularly move to favorable climates further make it difficult to specify ties to one household and one place. Once, Only Once, and in the Right Place reviews the evolution of current residence rules and the way residence concepts are presented to respondents. It proposes major changes to the basic approach of collecting residence information and suggests a program of research to improve the 2010 and future censuses.
The population and housing census is part of an integrated national statistical system, which may include other censuses (for example, agriculture), surveys, registers and administrative files. It provides, at regular intervals, the benchmark for population count at national and local levels. For small geographical areas or sub-populations, it may represent the only source of information for certain social, demographic and economic characteristics. For many countries the census also provides a solid framework to develop sampling frames. This publication represents one of the pillars for data collection on the number and characteristics of the population of a country.
In the early 1990s, the Census Bureau proposed a program of continuous measurement as a possible alternative to the gathering of detailed social, economic, and housing data from a sample of the U.S. population as part of the decennial census. The American Community Survey (ACS) became a reality in 2005, and has included group quarters (GQ)-such places as correctional facilities for adults, student housing, nursing facilities, inpatient hospice facilities, and military barracks-since 2006, primarily to more closely replicate the design and data products of the census long-form sample. The decision to include group quarters in the ACS enables the Census Bureau to provide a comprehensive benchmark of the total U.S. population (not just those living in households). However, the fact that the ACS must rely on a sample of what is a small and very diverse population, combined with limited funding available for survey operations, makes the ACS GQ sampling, data collection, weighting, and estimation procedures more complex and the estimates more susceptible to problems stemming from these limitations. The concerns are magnified in small areas, particularly in terms of detrimental effects on the total population estimates produced for small areas. Small Populations, Large Effects provides an in-depth review of the statistical methodology for measuring the GQ population in the ACS. This report addresses difficulties associated with measuring the GQ population and the rationale for including GQs in the ACS. Considering user needs for ACS data and of operational feasibility and compatibility with the treatment of the household population in the ACS, the report recommends alternatives to the survey design and other methodological features that can make the ACS more useful for users of small-area data.
Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.
Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.