Download Free Improving Biogas Production Book in PDF and EPUB Free Download. You can read online Improving Biogas Production and write the review.

This book highlights the current limitations of biogas production and yield and new avenues to improving them. Biogas production and yield are among the most important renewable energy targets for our world. Pursuing an innovative and biotechnological approach, the book presents alternative sources for biogas production and explores a broad range of aspects, including: pre-treatment of substrates, accelerators (enzyme-mediated) and inhibitors involved in the process of obtaining biogas and its yield, design specifications for digesters/modified digesters, managing biogas plants, microbial risk and slurry management, energy balance and positive climatic impacts of the biogas production chain, and the impacts on Human, Animal and Environmental Health (“One Health” concept for the biogas chain).
This book highlights the current limitations of biogas production and yield and new avenues to improving them. Biogas production and yield are among the most important renewable energy targets for our world. Pursuing an innovative and biotechnological approach, the book presents alternative sources for biogas production and explores a broad range of aspects, including: pre-treatment of substrates, accelerators (enzyme-mediated) and inhibitors involved in the process of obtaining biogas and its yield, design specifications for digesters/modified digesters, managing biogas plants, microbial risk and slurry management, energy balance and positive climatic impacts of the biogas production chain, and the impacts on Human, Animal and Environmental Health (“One Health” concept for the biogas chain).
This book focuses on biogas production by anaerobic digestion, which is the most popular bioenergy technology of today. Using anaerobic digestion for the production of biogas is a sustainable approach that simultaneously also allows the treatment of organic waste. The energy contained in the substrate is released in the form of biogas, which can be employed as a renewable fuel in diverse industrial sectors. Although biogas generation is considered an established process, it continues to evolve, e.g. by incorporating modifications and improvements to increase its efficiency and its downstream applications. The chapters of this book review the progress made related to feedstock, system configuration and operational conditions. It also addresses microbial pathways utilized, as well as storage, transportation and usage of biogas. This book is an up-to-date resource for scientists and students working on improving biogas production.
The Distinguishing Feature Of The Book Is Its Exhaustive Coverage Encompassing Theory And Practical Aspects On Items Like The Status Of Biogas Technology, Different Types Of Biogas Plants And Their Suitability For A Given Situation, Their Design Aspects, Sizing And Scaling Of Biogas Plants Which Are Illustrated With Calculations And Working Drawings. In Addition, Constructional Aspects, Cost Aspects, Diagnosis And Cure Of Faults During Operation And Details Of Utilisation Devices Are Detailed.
This open access book presents papers displayed in the 2nd International Conference on Energy and Sustainable Futures (ICESF 2020), co-organised by the University of Hertfordshire and the University Alliance DTA in Energy. The research included in this book covers a wide range of topics in the areas of energy and sustainability including: • ICT and control of energy;• conventional energy sources;• energy governance;• materials in energy research;• renewable energy; and• energy storage. The book offers a holistic view of topics related to energy and sustainability, making it of interest to experts in the field, from industry and academia.
Anaerobic digestion is a biochemical degradation process that converts complex organic material, such as animal manure, into methane and other byproducts. Part of the author's Wastewater Microbiology series, Microbiology of Anareboic Digesters eschews technical jargon to deliver a practical, how-to guide for wastewater plant operators.
Biogas Production covers the most cutting-edge pretreatment processes being used and studied today for the production of biogas. As an increasingly important piece of the "energy pie," biogas and other biofuels are being used more and more around the world in every conceivable area of industry and could be a partial answer to the energy problem and the elimination of global warming. This book will highlight the recent advances in the pretreatment and value addition of lignocellulosic wastes (LCW) with the main focus on domestic and agro-industrial residues. Mechanical, physical, and biological treatment systems are brought into perspective. The main value-added products from lignocellulosic wastes are summarized in a manner that pinpoints the most recent trends and the future directions. Physico-chemical and biological treatment systems seem to be the most favored options while biofuels, biodegradable composites, and biosorbents production paint a bright picture of the current and future bio-based products. Engineered microbes seem to tackle the problem of bioconversion of substrates that are otherwise nonconvertible by conventional wild strains. Although the main challenge facing LCW utilization is the high costs involved in treatment and production processes, some recent affordable processes with promising results have been proposed. Future trends are being directed to nanobiotechnology and genetic engineering for improved processes and products.
Written as a practical introduction to biogas plant design and operation, this book fills a huge gap by presenting a systematic guide to this emerging technology -- information otherwise only available in poorly intelligible reports by US governmental and other official agencies. The author draws on teaching material from a university course as well as a wide variety of industrial biogas projects he has been involved with, thus combining didactical skill with real-life examples. Alongside biological and technical aspects of biogas generation, this timely work also looks at safety and legal aspects as well as environmental considerations.
Biogas is a renewable energy resource that can be an alternative solution for the world's insatiable energy demands while helping in managing waste and reducing the greenhouse gas (GHG) emissions. It is also regarded as carbon neutral as the carbon in biogas comes from organic matter (feedstock) that captured this carbon from atmospheric CO2 over a relatively short timescale. This book has been written and compiled to collate latest information on biogas technology to help readers, researchers and extension workers alike to understand the fruitful exploitation of the process. It has fourteen chapters, primarily in three major categories: 01. the first category dealing with the basic biomethanation process including its ecology, microbiology, biochemistry and molecular biology. 02. the second category dealing with the evolution of the technology in Indian/global scenario from the lab to the land 03. the last category is dealing with the economics of the technology. All the various known and active names in this field of research and development have put their hearts and minds into their contributed chapters. The additional details provided in the Annexures (viz., Model bankable scheme for biogas commercialisation venture; Frequently asked questions in adopting biogas technology; Common terminologies in biogas research; Glossary of abbreviations and symbols frequently used in biogas research; and Prominent global entities in biogas R&D and commercialisation) double the usefulness of the compilation.
Emerging Technologies and Biological Systems for Biogas Upgrading systematically summarizes the fundamental principles and the state-of-the-art of biogas cleaning and upgrading technologies, with special emphasis on biological processes for carbon dioxide (CO2), hydrogen sulfide (H2S), siloxane, and hydrocarbon removal. After analyzing the global scenario of biogas production, upgrading and utilization, this book discusses the integration of methanation processes to power-to-gas systems for methane (CH4) production and physiochemical upgrading technologies, such as chemical absorption, water scrubbing, pressure swing adsorption and the use of membranes. It then explores more recent and sustainable upgrading technologies, such as photosynthetic processes using algae, hydrogen-mediated microbial techniques, electrochemical, bioelectrochemical, and cryogenic approaches. H2S removal with biofilters is also covered, as well as removal of siloxanes through polymerization, peroxidation, biological degradation and gas-liquid absorption. The authors also thoroughly consider issues of mass transfer limitation in biomethanation from waste gas, biogas upgrading and life cycle assessment of upgrading technologies, techno-economic aspects, challenges for upscaling, and future trends.Providing specific information on biogas upgrading technology, and focusing on the most recent developments, Emerging Technologies and Biological Systems for Biogas Upgrading is a unique resource for researchers, engineers, and graduate students in the field of biogas production and utilization, including waste-to-energy and power-to-gas. It is also useful for entrepreneurs, consultants, and decision-makers in governmental agencies in the fields of sustainable energy, environmental protection, greenhouse gas emissions and climate change, and strategic planning. - Explores all major technologies for biogas upgrading through physiochemical, biological, and electrochemical processes - Discusses CO2, H2S, and siloxane removal techniques - Provides a systematical approach to discuss technologies, including challenges to gas–liquid mass transfer, life cycle assessment, technoeconomic implications, upscaling and systems integration