Download Free Improved Brain Pet Quantification Using Partial Volume Correction Techniques Book in PDF and EPUB Free Download. You can read online Improved Brain Pet Quantification Using Partial Volume Correction Techniques and write the review.

This book presents the latest scientific developments in the field of positron emission tomography (PET) dealing with data acquisition, image processing, applications, statistical analysis, tracer development, parameter estimation, and kinetic modeling. It covers improved methodology and the application of existing techniques to new areas. The text also describes new approaches in scanner design and image processing, and the latest techniques for modeling and statistical analyses. This volume will be a useful reference for the active brain PET scientist, as well as a valuable introduction for students and researchers who wish to take advantage of the capabilities of PET to study the normal and diseased brain. - Authored by international authorities in PET - Provides the latest up-to-date techniques and applications - Covers all fundamental disciplines of PET in one volume - A comprehensive resource for students, clinicians, and new PET researchers
This book offers a wide-ranging and up-to-date overview of the basic science underlying PET and its preclinical and clinical applications in modern medicine. In addition, it provides the reader with a sound understanding of the scientific principles and use of PET in routine practice and biomedical imaging research. The opening sections address the fundamental physics, radiation safety, CT scanning dosimetry, and dosimetry of PET radiotracers, chemistry and regulation of PET radiopharmaceuticals, with information on labeling strategies, tracer quality control, and regulation of radiopharmaceutical production in Europe and the United States. PET physics and instrumentation are then discussed, covering the basic principles of PET and PET scanning systems, hybrid PET/CT and PET/MR imaging, system calibration, acceptance testing, and quality control. Subsequent sections focus on image reconstruction, processing, and quantitation in PET and hybrid PET and on imaging artifacts and correction techniques, with particular attention to partial volume correction and motion artifacts. The book closes by examining clinical applications of PET and hybrid PET and their physiological and/or molecular basis in conjunction with technical foundations in the disciplines of oncology, cardiology and neurology, PET in pediatric malignancy and its role in radiotherapy treatment planning. Basic Science of PET Imaging will meet the needs of nuclear medicine practitioners, other radiology specialists, and trainees in these fields.
This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable sophistication of nuclear medicine instrumentation and - crease in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of nuclear imaging for diagnosis and therapy has origins dating back almost to the pioneering work of Dr G. de Hevesy, quantitative imaging has only recently emerged as a promising approach for diagnosis and therapy of many diseases. An effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine instrumentation and dual-modality imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. A brief overview of each chapter is provided below. Chapter 1 presents a general overview of nuclear medicine imaging physics and instrumentation including planar scintigraphy, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Nowadays, patients’ diagnosis and therapy is rarely done without the use of imaging technology. As such, imaging considerations are incorporated in almost every chapter of the book. The development of dual-modality - aging systems is an emerging research field, which is addressed in chapter 2.
Functional imaging of the brain is one of the most rapidly advancing areas of neuroscience and Positron Emission Tomography (PET) plays a major role in this progress. This book provides a comprehensive overview of the current status of PET and state-of-the-art neuroimaging. It is comprised of summaries of the presentations by experts in the field. Topics covered include radiotracer selection, advances in instrumentation, image reconstruction and data analysis, and statistical mapping of brain activity. This book focuses on the accuracy of the functional image and the strategies for addressing clinical, scientific, and diagnostic questions.Covers the PET imaging process from tracer selection to analysis and interpretationContains 79 concise reports with abundant illustrationsThe definitive state-of-the-art book for functional neuroscience with PET
Currently there is no shortage of challenges and opportunities for PET instrumentation and quantitative imaging techniques. Molecular imaging technologies are leading to a revolutionary paradigm shift in health care and clinical practice. This issue reviews recent advances in PET instrumentation as well as volume correction strategies and strategies for motion tracking and correction, scatter compensation techniques, and attenuation correction techniques.
This volume provides a comprehensive overview of the methodology, physiology, and contemporary and novel applications of cerebrovascular reactivity (CVR) measurements. The chapters in this book cover topics such as an introduction of the neurophysiology, neuroimaging, and clinical methods for CVR measurement; the use of CVR methods in the study of aging, cerebrovascular dysfunction, dementia, and brain tumors; and recommendations for measurement protocols and future applications in clinical translation. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your research center and clinical investigation. Thorough and comprehensive, Cerebrovascular Reactivity: Methodological Advances and Clinical Applications is a valuable tool that provides researchers in neuroscience and neurology with the latest resources on the measurement, interpretation, and application of CVR measurement.
An up-to-date, superbly illustrated practical guide to the effective use of neuroimaging in the patient with sleep disorders. The only book to date to provide comprehensive coverage of this topic. A must for all healthcare workers interested in understanding the causes, consequences and treatment of sleep disorders.
This up-to-date, superbly illustrated book is a practical guide to the effective use of neuroimaging in the patient with cognitive decline. It sets out the key clinical and imaging features of the various causes of dementia and directs the reader from clinical presentation to neuroimaging and on to an accurate diagnosis whenever possible. After an introductory chapter on the clinical background, the available "toolbox" of structural and functional neuroimaging techniques is reviewed in detail, including CT, MRI and advanced MR techniques, SPECT and PET, and image analysis methods. The imaging findings in normal ageing are then discussed, followed by a series of chapters that carefully present and analyze the key findings in patients with dementias. Throughout, a practical approach is adopted, geared specifically to the needs of clinicians (neurologists, radiologists, psychiatrists, geriatricians) working in the field of dementia, for whom this book will prove an invaluable resource.
Neuroimaging and Neurophysiology in Psychiatry is an invaluable guide through the methods and applications of neuroimaging and neurophysiology.
Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book invaluable. This book is primarily repackaged content from the Basic Science section of the 'big' Valk book on PET. It contains new, completely revised and unchanged chapters covering the "basic sciences" section of the main book - total 18 chapters: 2 new (chapters 1, 16) 8 completely revised (chapters 4, 5, 8, 13, 14, 15, 17, 18) 3 minor corrections (chapters 2, 6, 11) 5 unchanged (chapters 3, 7, 9, 10, 12)