Download Free Important Figures Of Analytical Chemistry From Germany In Brief Biographies Book in PDF and EPUB Free Download. You can read online Important Figures Of Analytical Chemistry From Germany In Brief Biographies and write the review.

More than 80 personalities, in or from Germany, that over the centuries have shaped the development of analytical chemistry are introduced by brief biographies. These accounts go beyond summarising key biographical information and outline the individual's contributions to analytical chemistry. This richly illustrated Brief offers a unique resource of information that is not available elsewhere.
A Cultural History of Chemistry in the Nineteenth Century covers the period from 1815 to 1914 and the birth of modern chemistry. The elaboration of atomic theory - and new ideas of periodicity, structure, bonding, and equilibrium - emerged in tandem with new instruments and practices. The chemical industry expanded exponentially, fuelled by an increasing demand for steel, aluminium, dyestuffs, pharmaceuticals, and consumer goods. And the chemical laboratory became established in its two distinct modern settings of the university and industry. At the turn of the century, the discovery of radioactivity took hold of the public imagination, drawing chemistry closer to physics, even as it threatened to undermine the whole concept of atomism. The 6 volume set of the Cultural History of Chemistry presents the first comprehensive history from the Bronze Age to today, covering all forms and aspects of chemistry and its ever-changing social context. The themes covered in each volume are theory and concepts; practice and experiment; laboratories and technology; culture and science; society and environment; trade and industry; learning and institutions; art and representation. Peter J. Ramberg is Professor of the History of Science at Truman State University, USA. Volume 5 in the Cultural History of Chemistry set. General Editors: Peter J. T. Morris, University College London, UK, and Alan Rocke, Case Western Reserve University, USA.
Leibniz’s correspondence from his years spent in Paris (1672-1676) reflects his growth to mathematical maturity whereas that from the years 1676-1701 reveals his growth to maturity in science, technology and medicine in the course of which more than 2000 letters were exchanged with more than 200 correspondents. The remaining years until his death in 1716 witnessed above all the appearance of his major philosophical works. The focus of the present work is Leibniz's middle period and the core themes and core texts from his multilingual correspondence are presented in English from the following subject areas: mathematics, natural philosophy, physics (and cosmology), power technology (including mining and transport), engineering and engineering science, projects (scientific, technological and economic projects), alchemy and chemistry, geology, biology and medicine.
Activated Carbon Fiber and Textiles provides systematic coverage of the fundamentals, properties, and current and emerging applications of carbon fiber textiles in a single volume, providing industry professionals and academics working in the field with a broader understanding of these materials. Part I discusses carbon fiber principles and production, including precursors and pyrolysis, carbon fiber spinning, and carbonization and activation. Part II provides more detailed analysis of the key properties of carbon fiber textiles, including their thermal, acoustic, electrical, adsorption, and mechanical behaviors. The final section covers applications of carbon fiber such as filtration, energy protection, and energy and gas storage. - Features input from an editor who is an expert in his field: Professor Jonathan Chen has a wealth of experience in the area of activated carbon fiber materials - Provides systematic and comprehensive coverage of the key aspects of activated carbon fiber textiles, from their principles, processing, and properties to their industrial applications - Offers up-to-date coverage of new technology for the fiber and textiles industries - Covers applications such as filtration, energy protection, and energy and gas storage
As 2019 has been declared the International Year of the Periodic Table, it is appropriate that Structure and Bonding marks this anniversary with two special volumes. In 1869 Dmitri Ivanovitch Mendeleev first proposed his periodic table of the elements. He is given the major credit for proposing the conceptual framework used by chemists to systematically inter-relate the chemical properties of the elements. However, the concept of periodicity evolved in distinct stages and was the culmination of work by other chemists over several decades. For example, Newland’s Law of Octaves marked an important step in the evolution of the periodic system since it represented the first clear statement that the properties of the elements repeated after intervals of 8. Mendeleev’s predictions demonstrated in an impressive manner how the periodic table could be used to predict the occurrence and properties of new elements. Not all of his many predictions proved to be valid, but the discovery of scandium, gallium and germanium represented sufficient vindication of its utility and they cemented its enduring influence. Mendeleev’s periodic table was based on the atomic weights of the elements and it was another 50 years before Moseley established that it was the atomic number of the elements, that was the fundamental parameter and this led to the prediction of further elements. Some have suggested that the periodic table is one of the most fruitful ideas in modern science and that it is comparable to Darwin’s theory of evolution by natural selection, proposed at approximately the same time. There is no doubt that the periodic table occupies a central position in chemistry. In its modern form it is reproduced in most undergraduate inorganic textbooks and is present in almost every chemistry lecture room and classroom. This first volume provides chemists with an account of the historical development of the Periodic Table and an overview of how the Periodic Table has evolved over the last 150 years. It also illustrates how it has guided the research programmes of some distinguished chemists.
Proceedings of the Society are included in v. 1-59, 1879-1937.
Overlooked, even despised by historians of chemistry for many years, the genre of biography has enjoyed a revival since the beginning of this century. The key to its renaissance is the use of the biographical form to provide a contextual analysis of important themes in contrast to the uncritical, almost hagiographic, lives of chemists written in the earlier part of the twentieth century. Bringing together the contributions of scholars active in several different countries, Perspectives on Chemical Biography in the 21st Century leads the reader through emerging questions around sources, and the generic problems faced by authors of biographies, before moving on to discuss aspects more related with physical, theoretical and inorganic chemistry, and facets of 19th century chemistry. In contrast to the letters and diaries of earlier chemists, we are now faced with scientists who communicate by telephone and email, and compose their documents on computers. Are we facing a modern equivalent of the destruction of the Library of Alexandria where all our sources are wiped out electronically?