Download Free Implications Of Ultra Low Cost Access To Space Book in PDF and EPUB Free Download. You can read online Implications Of Ultra Low Cost Access To Space and write the review.

Since the advent of the space age, a primary constraint on military, commercial, and civil space missions has been the cost of launch. Launching objects into space requires substantial investments in launch systems and infrastructure, which has restricted the market to only a handful of national governments and several large private companies. This study explores the possibility of a space industry significantly less constrained by the cost of access to space.
From the authors' abstract: "This analytical study looks at the importance of Deep Space Operations and recommends an approach for senior policy leaders. Section 1 presents a capability requirements definition with candidate solutions and technology strategies. Section 2 recommends an acquisition and organizational approach. Section 3 provides an extended strategic rationale for deep space operations as a national priority." And from the Introduction: [this essay] "presents capability requirements, potential solutions, and strategic rationale for achieving movement and maneuver advantage in deep space. In this context, deep space is anything beyond geosynchronous Earth orbit (GEO). Driving the research are two primary assumptions underpinning the need for investment in deep space propulsion. The first assumption is that growing international activity, commerce, and industry in space extends the global commons, thus creating a military-economic imperative for the United States Department of Defense (DoD) to expand its protection of U.S. interests by defending space lines of communication. Although there are wide-ranging reasons to expand the space-faring capabilities of the human species, from the capitalistic to the existential, the fact of its occurrence offers the U.S. immense strategic opportunity. Section 1, operating on this assumption, recommends capability-based requirements for deep space operations given a projected future operating environment.The second driving assumption underpinning this study is that improved movement and maneuver capabilities in deep space offer a wide array of benefits for the current National Security Enterprise, and for this reason alone demands attention in the form of disciplined investment. Furthermore, because the core functional capability required for deep space operations is in-space propulsion, the requirement necessitates a materiel solution.
Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. This approach entails a common understanding and mastering of basic principles of safety design for space systems at all levels of the program organisation. Fully supported by the International Association for the Advancement of Space Safety (IAASS), written by the leading figures in the industry, with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle and the International Space Station, this book provides a comprehensive reference for aerospace engineers in industry. It addresses each of the key elements that impact on space systems safety, including: the space environment (natural and induced); human physiology in space; human rating factors; emergency capabilities; launch propellants and oxidizer systems; life support systems; battery and fuel cell safety; nuclear power generators (NPG) safety; habitat activities; fire protection; safety-critical software development; collision avoidance systems design; operations and on-orbit maintenance. - The only comprehensive space systems safety reference, its must-have status within space agencies and suppliers, technical and aerospace libraries is practically guaranteed - Written by the leading figures in the industry from NASA, ESA, JAXA, (et cetera), with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle, small and large satellite systems, and the International Space Station - Superb quality information for engineers, programme managers, suppliers and aerospace technologists; fully supported by the IAASS (International Association for the Advancement of Space Safety)
During 1988, the National Research Council's Space Science Board reorganized itself to more effectively address NASA's advisory needs. The Board's scope was broadened: it was renamed the Space Studies Board and, among other new initiatives, the Committee on Human Exploration was created. The new committee was intended to focus on the scientific aspects of human exploration programs, rather than engineering issues. Their research led to three reports: Scientific Prerequisites for the Human Exploration of Space published in 1993, Scientific Opportunities in the Human Exploration of Space published in 1994, and Science Management in the Human Exploration of Space published in 1997. These three reports are collected and reprinted in this volume in their entirety as originally published.
This book, Space Capstone Publication Spacepower: Doctrine for Space Forces, is capstone doctrine for the United States Space Force and represents our Service's first articulation of an independent theory of spacepower. This publication answers why spacepower is vital for our Nation, how military spacepower is employed, who military space forces are, and what military space forces value. In short, this capstone document is the foundation of our professional body of knowledge as we forge an independent military Service committed to space operations. Like all doctrine, the SCP remains subject to the policies and strategies that govern its employment. Military spacepower has deterrent and coercive capacities - it provides independent options for National and Joint leadership but achieves its greatest potential when integrated with other forms of military power. As we grow spacepower theory and doctrine, we must do so in a way that fosters greater integration with the Air Force, Army, Navy, Marine Corps, and Coast Guard. It is only by achieving true integration and interdependence that we can hope to unlock spacepower's full potential.
In Defense 101, a concise primer for understanding the United States' $700+ billion defense budget and rapidly changing military technologies, Michael O'Hanlon provides a deeply informed yet accessible analysis of American military power. After an introduction in which O'Hanlon surveys today's international security environment, provides a brief sketch of the history of the US military, its command structure, the organization of its three million personnel, and a review of its domestic basing and global reach, Defense 101 provides in-depth coverage of four critical areas in military affairs: • Defense Budgeting and Resource Allocation: detailed budget and cost breakdowns, wartime spending allocations, economics of overseas basing, military readiness, and defense budgeting versus US grand strategy • Gaming and Modeling Combat: wargaming, micro modeling, nuclear exchange calculations, China scenarios, and assessments of counterinsurgency missions • Technological Change and Military Innovation: use of computers, communications, and robotics, cutting-edge developments in projectiles and propulsion systems • The Science of War, military uses of space, missile defense, and nuclear weapons, testing, and proliferation For policy makers and experts, military professionals, students, and citizens alike, Defense 101 helps make sense of the US Department of Defense, the basics of war and the future of armed conflict, and the most important characteristics of the American military.