Download Free Impact Of Roughness On Shock Wave Reflection Phenomena Book in PDF and EPUB Free Download. You can read online Impact Of Roughness On Shock Wave Reflection Phenomena and write the review.

The phenomenon of shock wave reflection was first reported by the distinguished philosopher Ernst Mach in 1878. Its study was then abandoned for a period of about 60 years until its investigation was initiated in the early 1940s by Professor John von Neumann and Professor Bleakney. Under their supervision, 15 years of intensive research related to various aspects of the reflection of shock waves in pseudo-steady flows were carried out. It was during this period that the four basic shock wave reflection configurations were discovered. Then, for a period of about 10 years from the mid 1950s until the mid 1960s, investigation of the reflection phenomenon of shock waves was kept on a low flame all over the world (e. g. Australia, Japan, Canada, U. S. A. , U. S. S. R. , etc. ) until Professor Bazhenova from the U. S. S. R. , Professor Irvine Glass from Canada, and Professor Roy Henderson from Australia re initiated the study of this and related phenomena. Under their scientific supervision and leadership, numerous findings related to this phenomenon were reported. Probably the most productive research group in the mid 1970s was that led by Professor Irvine Glass in the Institute of Aerospace Studies of the University of Toronto. In 1978, exactly 100 years after Ernst Mach first reported his discovery of the reflection phenomenon, I published my Ph. D. thesis in which, for the first time, analytical transition criteria between the various shock wave reflection configurations were established.
This book presents a wealth of images of shock wave phenomena, gathered by the author over the past 40 years. Shadowgrams and interferograms of basic shock-dynamic topics such as reflection, diffraction, refraction, and focusing of shock waves in gases and liquids are sequentially displayed. Though the images themselves are self-explanatory, brief explanations of the experimental conditions are included, so as to facilitate analysis and numerical reproduction of the image data. In addition, the book presents interferometric observations of underwater shock wave/bubble interactions, and highlights the multifaceted applications of shock wave phenomena to medicine and industry. Given its scope, the book offers a unique resource for students and researchers who are interested in shock wave phenomena. However, the content has also been specifically prepared for the benefit of readers who are interested in gas dynamics and medical applications of shock waves, and are looking for reliable experimental images.
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock-wave movement with time. Good similarity of free-air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressure at the surface for all heights of burst was to lower the overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple-point path at different burst heights.
This book examines blast waves—their methods of generation, their propagation in several dimensions through the real atmosphere and layered gases, and their interactions with simple structures—thereby providing a broad overview of the field. The intended audience has a basic knowledge of algebra and a good grasp of the concepts of conservation of mass and energy. The text includes an introduction to blast wave terminology and conservation laws, and there is a discussion of units and the importance of consistency. This new edition of Blast Waves has been thoroughly updated and includes two new chapters that cover numerical hydrodynamics and blast injury. Authored by an expert with over forty years of experience in the field of blast and shock, this book offers many lessons as well as a historical perspective on developments in the field.
Shock wave research covers important inderdisciplinary areas which range from basic topics on gasdynamics, combustion and detonation, physico-chemistry of high temperature gases, plasma physics, astro and geophysics, materials science, astronautics and space technology to medical and industrial applications. This book includes 202 papers presented at the 18th the International Symposium on Shock Waves which describe the research frontier of shock wave phenopmena and 14 plenary lectures which show the state of the art of various fields of shock wave research. This proceedings is a unique collection of most important and updated shock wave research.
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
Volume is indexed by Thomson Reuters CPCI-S (WoS).The objective of this special-topic volume was to disseminate work on current trends in Explosion, Shock Wave and Hypervelocity Phenomena in Materials. Recent years have witnessed an astonishing growth in research on materials science. Exotic new materials, innovative processing techniques and challenging computational methods make the pursuit of research in this field increasingly interesting and rewarding. Considering as it does, the significance of shock-wave phenomena in the rapidly changing materials-science scene, this collection of papers will undoubtedly foster further advanced research into the allied research areas of explosive, shock-wave and hypervelocity phenomena in materials.The 66 peer-reviewed papers cover topics such as: shock waves, detonation and combustion, materials processing, numerical simulation and high strain-rate phenomena. This volume collects 60 papers from the March 2007 Second International Symposium on Explosion, Shock Wave and Hypervelocity Phenomena in Materials, organized by the Kumamoto University's (Japan) Shock Wave and Condensed Matter Research Center, 21st Century COE Program on Pulsed Power Science, and Faculty of Engineering in cooperation with Japan Explosive Society's Technical Section of Explosion and Impulsive Processing and the Japan Society for Technology of Plasticity's Committee of the High-Energy-Rate Forming. Some examples of topics addressed include development of a large diameter diaphragmless shock tube for gas-dynamic laser studies, behaviors of high explosive near the critical conditions for shock initiation of detonation, dynamic response of a steel pipe to internal blast loading, detonation behaviors of nitromethane with various initiating shock pressure, computational studies of the behavior of cellular structures under impact loading, numerical simulation of underwater explosive compaction process for compaction of tungsten powder, processing of advanced materials using conventional and shock techniques, dependence of blast attenuation on weight of barrier materials, sterilization of dry powdered foods by successive impacts, influence of inert copper and silicon carbide inserts on process of detonation transmission through water, and underwater explosive welding of thin magnesium plate onto metal plates.
The papers collected together in this volume constitute a review of recent research on the response of condensed matter to dynamic high pressures and temperatures. Inlcuded are sections on equations of state, phase transitions, material properties, explosive behavior, measurement techniques, and optical and laser studies. Recent developments in this area such as studies of impact and penetration phenomenology, the development of materials, especially ceramics and molecular dynamics and Monte Carlo simulations are also covered. These latest advances, in addition to the many other results and topics covered by the authors, serve to make this volume the most authoritative source for the shock wave physics community.
The Handbook of Shock Waves contains a comprehensive, structured coverage of research topics related to shock wave phenomena including shock waves in gases, liquids, solids, and space. Shock waves represent an extremely important physical phenomena which appears to be of special practical importance in three major fields: compressible flow (aerodynamics), materials science, and astrophysics. Shock waves comprise a phenomenon that occurs when pressure builds to force a reaction, i.e. sonic boom that occurs when a jet breaks the speed of sound.This Handbook contains experimental, theoretical, and numerical results which never before appeared under one cover; the first handbook of its kind.The Handbook of Shock Waves is intended for researchers and engineers active in shock wave related fields. Additionally, R&D establishments, applied science & research laboratories and scientific and engineering libraries both in universities and government institutions. As well as, undergraduate and graduate students in fluid mechanics, gas dynamics, and physics. Key Features* Ben-Dor is known as one of the founders of the field of shock waves* Covers a broad spectrum of shock wave research topics* Provides a comprehensive description of various shock wave related subjects* First handbook ever to include under one separate cover: experimental, theoretical, and numerical results