Download Free Immunological Computation Book in PDF and EPUB Free Download. You can read online Immunological Computation and write the review.

Clearly, nature has been very effective in creating organisms that are capable of protecting themselves against a wide variety of pathogens such as bacteria, fungi, and parasites. The powerful information-processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature prov
Computational Immunology: Models and Tools encompasses the methodological framework and application of cutting-edge tools and techniques to study immunological processes at a systems level, along with the concept of multi-scale modeling. The book's emphasis is on selected cases studies and application of the most updated technologies in computational modeling, discussing topics such as computational modeling and its usage in immunological research, bioinformatics infrastructure, ODE based modeling, agent based modeling, and high performance computing, data analytics, and multiscale modeling. There are also modeling exercises using recent tools and models which lead the readers to a thorough comprehension and applicability. The book is a valuable resource for immunologists, computational biologists, bioinformaticians, biotechnologists, and computer scientists, as well as all those who wish to broaden their knowledge in systems modeling. - Offers case studies with different levels of complexity - Provides a detailed view on cutting-edge tools for modeling that are useful to experimentalists with limited computational skills - Explores the usage of simulation for hypothesis generation, helping the reader to understand the most valuable points on experimental setting
Using bioinformatics methods to generate a systems-level view of the immune system; description of the main biological concepts and the new data-driven algorithms. Despite the fact that advanced bioinformatics methodologies have not been used as extensively in immunology as in other subdisciplines within biology, research in immunological bioinformatics has already developed models of components of the immune system that can be combined and that may help develop therapies, vaccines, and diagnostic tools for such diseases as AIDS, malaria, and cancer. In a broader perspective, specialized bioinformatics methods in immunology make possible for the first time a systems-level understanding of the immune system. The traditional approaches to immunology are reductionist, avoiding complexity but providing detailed knowledge of a single event, cell, or molecular entity. Today, a variety of experimental bioinformatics techniques connected to the sequencing of the human genome provides a sound scientific basis for a comprehensive description of the complex immunological processes. This book offers a description of bioinformatics techniques as they are applied to immunology, including a succinct account of the main biological concepts for students and researchers with backgrounds in mathematics, statistics, and computer science as well as explanations of the new data-driven algorithms in the context of biological data that will be useful for immunologists, biologists, and biochemists working on vaccine design. In each chapter the authors show interesting biological insights gained from the bioinformatics approach. The book concludes by explaining how all the methods presented in the book can be integrated to identify immunogenic regions in microorganisms and host genomes.
This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.
Computational Immunology: Applications focuses on different mathematical models, statistical tools, techniques, and computational modelling that helps in understanding complex phenomena of the immune system and its biological functions. The book also focuses on the latest developments in computational biology in designing of drugs, targets, biomarkers for early detection and prognosis of a disease. It highlights the applications of computational methods in deciphering the complex processes of the immune system and its role in health and disease. This book discusses the most essential topics, including Next generation sequencing (NGS) and computational immunology Computational modelling and biology of diseases Drug designing Computation and identification of biomarkers Application in organ transplantation Application in disease detection and therapy Computational methods and applications in understanding of the invertebrate immune system S Ghosh is MSc, PhD, PGDHE, PGDBI, is PhD from IICB, CSIR, Kolkata, awarded the prestigious National Scholarship from the Government of India. She has worked and published extensively in glycobiology, sialic acids, immunology, stem cells and nanotechnology. She has authored several publications that include books and encyclopedia chapters in reputed journals and books.
"This book offers new ideas and recent developments in Natural Computing, especially on artificial immune systems"--Provided by publisher.
This is a pioneering work on the emerging field of artificial immune systems-highly distributed systems based on the principles of the natural system. Like artificial neural networks, artificial immune systems can learn new information and recall previously learned information. This book provides an overview of artificial immune systems, explaining its applications in areas such as immunological memory, anomaly detection algorithms, and modeling the effects of prior infection on vaccine efficacy.
Structural Biology in Immunology, Structure/Function of Novel Molecules of Immunologic Importance delivers important information on the structure and functional relationships in novel molecules of immunologic interest. Due to an increasingly sophisticated understanding of the immune system, the approach to the treatment of many immune-mediated diseases, including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease has been dramatically altered. Furthermore, there is an increasing awareness of the critical role of the immune system in cancer biology. The improved central structure function relationships presented in this book will further enhance our ability to understand what defects in normal individuals can lead to disease. - Describes novel/recently discovered immunomodulatory proteins, including antibodies and co-stimulatory or co-inhibitory molecules - Emphasizes new biologic and small molecule drug design through the exploration of structure-function relationship - Features a collaborative editorial effort, involving clinical immunologists and structural biologists - Provides useful and practical insights on developing the necessary links between basic science and clinical therapy in immunology - Gives interested parties a bridge to learn about computer modeling and structure based design principles
Current Protocols in Immunology is a three-volume looseleaf manual that provides comprehensive coverage of immunological methods from classic to the most cutting edge, including antibody detection and preparation, assays for functional activities of mouse and human cells involved in immune responses, assays for cytokines and their receptors, isolation and analysis of proteins and peptides, biochemistry of cell activation, molecular immunology, and animal models of autoimmune and inflammatory diseases. Carefully edited, step-by-step protocols replete with material lists, expert commentaries, and safety and troubleshooting tips ensure that you can duplicate the experimental results in your own laboratory. Bimonthly updates, which are filed into the looseleaf, keep the set current with the latest developments in immunology methods. The initial purchase includes one year of updates and then subscribers may renew their annual subscriptions. Current Protocols publishes a family of laboratory manuals for bioscientists, including Molecular Biology, Human Genetics, Protein Science, Cytometry, Cell Biology, Neuroscience, Pharmacology, and Toxicology.
Artificial Immune Systems (AIS) are adaptive systems inspired by the biological immune system and applied to problem solving. This book provides an accessible introduction that will be suitable for anyone who is beginning to study or work in this area. It gives a clear definition of an AIS, sets out the foundations of the topic (including basic algorithms), and analyses how the immune system relates to other biological systems and processes. No prior knowledge of immunology is needed - all the essential background information is covered in the introductory chapters. Key features of the book include: - A discussion of AIS in the context of Computational Intelligence; - Case studies in Autonomous Navigation, Computer Network Security, Job-Shop Scheduling and Data Analysis =B7 An extensive survey of applications; - A framework to help the reader design and understand AIS; - A web site with additional resources including pseudocodes for immune algorithms, and links to related sites. Written primarily for final year undergraduate and postgraduate students studying Artificial Intelligence, Evolutionary and Biologically Inspired Computing, this book will also be of interest to industrial and academic researchers working in related areas.