Download Free Immobilized Enzyme Technology Book in PDF and EPUB Free Download. You can read online Immobilized Enzyme Technology and write the review.

The first systematic overview of this key technique since the early 1990s, this authoritative reference is the only handbook available to include all recent developments. The author draws on his wide-ranging experience in both academia and industry to systematically cover all types of enzyme immobilization methods, such as adsorption-based and covalent immobilization, as well as enzyme entrapment and encapsulation. Throughout, a careful review of materials and techniques for the generation of functional immobilized enzymes benefits both developers and users of carrier-bound enzymes. A must for biotechnologists, biochemists and preparative chemists using enzymes in their daily work.
This fourth edition volume expands on the previous editions with new insights on important aspects to take into accounting when immobilizing enzymes and cells, illustrating outstanding examples that support those aspects, and exploring ways to fabricate and characterize heterogeneous biocatalysts including both immobilized enzymes and cells. The transformation of soluble and usually instable enzymes into heterogeneous and highly stable biocatalysts is strongly emphasized. The chapters in this book cover topics such as the importance of enzyme orientation on the support surface; application and characterization of immobilized enzymes; different functionalization chemistries for the modulation of the immobilized enzyme properties; co-immobilization of multi-enzyme systems; new analytical techniques for the characterization of heterogeneous biocatalysts; protocols for cell entrapment in alginate; preparation and characterization of biofilms; and cell encapsulation technologies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Immobilization of Enzymes and Cells: Methods and Protocols, Fourth Edition is a valuable resource for researchers interested in expanding their knowledge of this developing field.
This book covers the latest developments in enzyme immobilization with its wide applications, such as for industry, agriculture, medicine, and the environment. Topics covered include basics of enzyme immobilization, its implication in therapeutics and disease diagnostics, and its significance in solving environmental problems. This is an ideal book for researchers, graduate and postgraduate students, as well as scientists in industry, agriculture and health sectors. This book is a complete summary of enzyme immobilization and also thoroughly covers all the latest research. This book covers: The last one-hundred years of innovative research done in enzyme immobilization Recent developments in immobilization techniques, such as types of matrices, immobilization methods, and linking agents, as well as enzyme immobilization without any matrices and its properties The physiological and industrial significance of enzymes from plants and the implementation of immobilized enzymes in the treatment of waste water and polluted air Biomedical and bioanalytical applications of immobilized enzymes
An authoritative summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application for environmental sustainability Green Synthesis of Nanomaterials for Bioenergy Applications is an important guide that provides information on the fabrication of nanomaterial and the application of low cost, green methods. The book also explores the impact on various existing bioenergy approaches. Throughout the book, the contributors—noted experts on the topic—offer a reliable summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application to the field of environmental sustainability. The green synthesis of nanoparticles process has been widely accepted as a promising technique that can be applied to a variety of fields. The green nanotechnology-based production processes to fabricate nanomaterials operates under green conditions without the intervention of toxic chemicals. The book’s exploration of more reliable and sustainable processes for the synthesis of nanomaterials, can lead to the commercial application of the economically viability of low-cost biofuels production. This important book: Summarizes the quest for an environmentally sustainable synthesis process of nanomaterials for their application to the field of environmental sustainability Offers an alternate, sustainable green energy approach that can be commercially implemented worldwide Covers recent approaches such as fabrication of nanomaterial that apply low cost, green methods and examines its impact on various existing bioenergy applications Written for researchers, academics and students of nanotechnology, nanosciences, bioenergy, material science, environmental sciences, and pollution control, Green Synthesis of Nanomaterials for Bioenergy Applications is a must-have guide that covers green synthesis and characterization of nanomaterials for cost effective bioenergy applications.
The application of biotechnology in the food sciences has led to an increase in food production and enhanced the quality and safety of food. Food biotechnology is a dynamic field and the continual progress and advances have not only dealt effectively with issues related to food security but also augmented the nutritional and health aspects of food. Advances in Food Biotechnology provides an overview of the latest development in food biotechnology as it relates to safety, quality and security. The seven sections of the book are multidisciplinary and cover the following topics: GMOs and food security issues Applications of enzymes in food processing Fermentation technology Functional food and nutraceuticals Valorization of food waste Detection and control of foodborne pathogens Emerging techniques in food processing Bringing together experts drawn from around the world, the book is a comprehensive reference in the most progressive field of food science and will be of interest to professionals, scientists and academics in the food and biotech industries. The book will be highly resourceful to governmental research and regulatory agencies and those who are studying and teaching food biotechnology.
A comprehensive resource on techniques and applications for immobilizing catalysts Catalyst Immobilization: Methods and Applications covers catalyst immobilization topics including technologies, materials, characterization, chemical activity, and recyclability. The book also presents innovative applications for supported catalysts, such as flow chemistry and machine-assisted organic synthesis. Written by an international panel of expert contributors, this book outlines the general principles of catalyst immobilization and explores different types of supports employed in catalyst heterogenization. The book?s chapters examine the immobilization of chiral organocatalysts, reactions in flow reactors, 3D printed devices for catalytic systems, and more. Catalyst Immobilization offers a modern vision and a broad and critical view of this exciting field. This important book: -Offers a guide to supported and therefore recyclable catalysts, which is one of the most important tools for developing a highly sustainable chemistry -Presents various immobilization techniques and applications -Explores new trends, such as 3D printed devices for catalytic systems -Contains information from a leading international team of authors Written for catalytic chemists, organic chemists, process engineers, biochemists, surface chemists, materials scientists, analytical chemists, Catalyst Immobilization: Methods and Applications presents the latest developments and includes a review of the innovative trends such as flow chemistry, reactions in microreactors, and beyond.
This second edition of a bestselling textbook offers an instructive and comprehensive overview of our current knowledge of biocatalysis and enzyme technology. The book now contains about 40% more printed content. Three chapters are completely new, while the others have been thoroughly updated, and a section with problems and solutions as well as new case studies have been added. Following an introduction to the history of enzyme applications, the text goes on to cover in depth enzyme mechanisms and kinetics, production, recovery, characterization and design by protein engineering. The authors treat a broad range of applications of soluble and immobilized biocatalysts, including wholecell systems, the use of non-aqueous reaction systems, applications in organic synthesis, bioreactor design and reaction engineering. Methods to estimate the sustainability, important internet resources and their evaluation, and legislation concerning the use of biocatalysts are also covered.
Biotechnological processes often require the use of immobilized biocatalysts. This translation of the most successful German edition introduces the theoretical background of this rapidly growing field followed by a detailed description of the various techniques of immobilizing, characterizing, and using biocatalysts. The comprehensive discussion of possible applications in industrial processes and in basic research results in a practical guide for everyone involved in these techniques. Furthermore, some selected experiments are added in order to facilitate the understanding of the theoretical reports.
Immobihzatron of enzymes, cells, and organelles has expanded greatly in the past 30 years as the advantages of immobilization have been evaluated and utilized in analyttcal, biotransformation, and medical applications. A c- sequence of this explosion of technology IS that there is now a bewildering array of permutations for the immobilization of biological material. The p- pose of Immobilization of Enzymes and Cells is to provrde a basic reference tool for all academic and industrial research workers seeking to start or expand the use of mnnobilization techniques in their work. The book does not aim to provide comprehensive coverage of the vast range of methods available, but will serve as a launch pad for potential users of immobilization techniques. One reason for the vast expanse of mmrobilization technology lies m the subject material to be immobilized. Biological catalysts (enzymes, organelles, and cells) have a high degree of individual variability, and although many tmmobilization techniques have wide applicability, tt is imposstble for one or even a few methods to cater to the great diversity of requirements inherent in biological material. This is especially so when the atm is to produce an op- mum system m which the immobihzed biocatalyst will function at high levels of efficrency, stability, and so on.
This textbook provides a clear and authoritative guide to the principles and practice of the utilization of enzymes in biotechnology. Enzymes have increasingly important applications in the food and pharmaceutical industry, in medicine, and as biosensors.