Download Free Imidic Polymers And Green Polymer Chemistry Book in PDF and EPUB Free Download. You can read online Imidic Polymers And Green Polymer Chemistry and write the review.

This book reviews the latest research, development, and future potential of polyimides and green polymer chemistry. It combines the major interdisciplinary research in this area. Polymers with imidic structure, known as polyimides, are widely investigated owing to their practical implications in numerous industrial sectors. The book explains why polyimides offer versatility unparalleled in comparison to most other classes of macromolecules. In addition, developments in green polymer chemistry in this area have been stimulated by health and environmental concerns, interest in sustainability, desire to decrease the dependence on petroleum, and opportunities to design and produce “green” products and processes. Major advances include new uses of green processing methodologies, and green polymeric products. Imidic Polymers and Green Polymer Chemistry: New Technology and Developments in Process and Product is targeted to scientists, engineers, and students who are involved or interested in green polymer chemistry and imidic polymers. This book will serve as a valuable reference for those with an interest in synthesis of polyimides and the chemistry and physical chemistry of polyimide compounds.
This new book examines the latest developments in the important and growing field of producing conventional polymers from sustainable sources. With recent advancements in synthesis technologies and the discovery of new functional monomers, research shows that green polymers with better properties can be produced from renewable resources. This volume describes these advances in synthesis, processing, and technology and provides not only state-of-the-art information but also acts to stimulate research in this direction. Green Polymer Chemistry and Composites: Pollution Prevention and Waste Reduction illustrates how chemical industries play an essential role to sustain the world economies and looks at forthcoming technologies and scientific developments in novel products, less toxicological materials, and industrial procedures with high efficiency and renewable energy products. Green chemistry seeks for the design of innovative chemical products with higher efficiency and lowest hazardous substances for the health and the environment.
"This book is about sustainability and green polymer chemistry products and processes"--
Green chemistry is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green polymer chemistry is an extension of green chemistry to polymer science and engineering. Developments in this area have been stimulated by health and environmental concerns, interest in sustainability, desire to decrease the dependence on petroleum, and opportunities to design and produce "green" products and processes. Major advances include new uses of biobased feedstock, green reactions, green processing methodologies, and green polymeric products. A current feature of green polymer chemistry is that it is both global and multidisciplinary. Thus, publications in this field are spread out over different journals in different countries. Moreover, a successful research effort may involve collaborations of people in various disciplines, such as organic chemistry, polymer chemistry, material science, chemical engineering, biochemistry, molecular biology, microbiology, enzymology, toxicology, environmental science, and analytical chemistry. This book combines the major interdisciplinary research in this field and is targeted for scientists, engineers, and students, who are involved or interested in green polymer chemistry. These may include chemists, biochemists, material scientists, chemical engineers, microbiologists, molecular biologists, enzymologists, toxicologists, environmental scientists, and analytical chemists. It can be a textbook for a course on green chemistry and also a reference book for people who need information on specific topics involving biocatalysis and biobased materials.
Renowned experts give all essential aspects of the techniques and applications of graft copolymers based on polysaccharides. Polysaccharides are the most abundant natural organic materials and polysaccharide based graft copolymers are of great importance and widely used in various fields. Natural polysaccharides have recently received more attention due to their advantages over synthetic polymers by being non-toxic, biodegradable and available at low cost. Modification of polysaccharides through graft copolymerization improves the properties of polysaccharides. Grafting is known to improve the characteristic properties of the backbones. Such properties include water repellency, thermal stability, flame resistance, dye-ability and resistance towards acid-base attack and abrasion. Polysaccharides and their graft copolymers find extensive applications in diversified fields. Applications of modified polysaccharides include drug delivery devices, controlled release of fungicides, selective water absorption from oil-water emulsions, purification of water etc.
This Special Issue deals with crystal–chemical aspects of the zinc triad elements, thereby spanning a broad range from alloys, metal–organic compounds, and ionic compounds, through to molecular species.
This book reviews the latest research, development, and future potential of polyimides and green polymer chemistry. It combines the major interdisciplinary research in this area. Polymers with imidic structure, known as polyimides, are widely investigated owing to their practical implications in numerous industrial sectors. The book explains why polyimides offer versatility unparalleled in comparison to most other classes of macromolecules. In addition, developments in green polymer chemistry in this area have been stimulated by health and environmental concerns, interest in sustainability, desire to decrease the dependence on petroleum, and opportunities to design and produce “green” products and processes. Major advances include new uses of green processing methodologies, and green polymeric products. Imidic Polymers and Green Polymer Chemistry: New Technology and Developments in Process and Product is targeted to scientists, engineers, and students who are involved or interested in green polymer chemistry and imidic polymers. This book will serve as a valuable reference for those with an interest in synthesis of polyimides and the chemistry and physical chemistry of polyimide compounds.
"This book has succeeded in covering the basic chemistry essentials required by the pharmaceutical science student... the undergraduate reader, be they chemist, biologist or pharmacist will find this an interesting and valuable read." –Journal of Chemical Biology, May 2009 Chemistry for Pharmacy Students is a student-friendly introduction to the key areas of chemistry required by all pharmacy and pharmaceutical science students. The book provides a comprehensive overview of the various areas of general, organic and natural products chemistry (in relation to drug molecules). Clearly structured to enhance student understanding, the book is divided into six clear sections. The book opens with an overview of general aspects of chemistry and their importance to modern life, with particular emphasis on medicinal applications. The text then moves on to a discussion of the concepts of atomic structure and bonding and the fundamentals of stereochemistry and their significance to pharmacy- in relation to drug action and toxicity. Various aspects of aliphatic, aromatic and heterocyclic chemistry and their pharmaceutical importance are then covered with final chapters looking at organic reactions and their applications to drug discovery and development and natural products chemistry. accessible introduction to the key areas of chemistry required for all pharmacy degree courses student-friendly and written at a level suitable for non-chemistry students includes learning objectives at the beginning of each chapter focuses on the physical properties and actions of drug molecules
Green polymer chemistry is now a global pursuit and comprises diverse disciplines, such as organic synthesis, polymer chemistry, material science, microbiology, molecular biology, catalysis, enzymology, environmental science, analytical chemistry, and chemical engineering. This field is equally active in the United States as well as Europe and Asia. Researchers, students, and people new to this field value a forum to meet and share ideas; this can take the form of a symposium dedicated to this field, or a special book that features the latest work done by leading practitioners. "Green Polymer Chemistry: Biobased Materials and Biocatalysis" is a symposium series put on by the American Chemical Society that has been very successful and serves to bring together a community of scientists with different backgrounds but with common research interests. In the August 2017 symposium in Washington, D.C., there were a total of 84 presentations and 16 posters (one of the largest symposia in the meeting). The symposium was structured into 10 sessions: -Bio-Based Materials: Industrial Perspectives -Developments in Biocatalysts -Green Biocatalytic Transformations -Chemical Catalytic Routes to Bio-Based Materials -New Reaction Strategies and Materials -Polysaccharide-Based Materials -Plant Oils and Ferulate-Based Materials -Bio-Based Thermosetting Resins -Therapeutics and Opto-Electronics -Further Applications of Bio-Based Materials Many of the leading researchers in this field accepted the invitation to speak, and they reported exciting findings in various areas, including new bio-based source materials, green conversion methods, new or improved processing methodologies, and green polymer-related products. For convenience, this book is organized into seven sections: novel bioengineered approaches; new enzymatic methodologies; new materials based on polysaccharides; bio-related polyesters, polyamides, and polyurethanes; bio-based phenolics and composites; bio-based monomers and resulting products; and bio-based solvents and additives.
Polyimide is one of the most efficient polymers in many industries for its excellent thermal, electrical, mechanical, and chemical properties as well as its easy processability. In the electronic and electrical engineering industries, polyimide has widely been used for decades thanks to its very good dielectric and insulating properties at the high electric field and at high temperatures of around 200°C in long term-service. Moreover, polyimide appears essential for the development of new electronic devices where further considerations such as high power density, integration, higher temperature, thermal conduction management, energy storage, reliability, or flexibility are required in order to sustain the growing global electrical energy consumption. This book gathers interdisciplinary chapters on polyimide in various topics through state-of-the-art and original ongoing research.