Download Free Ieee Workshop On Computer Vision Beyond The Visible Spectrum Book in PDF and EPUB Free Download. You can read online Ieee Workshop On Computer Vision Beyond The Visible Spectrum and write the review.

Recently, there has been a dramatic increase in the use of sensors in the non-visible bands. As a result, there is a need for existing computer vision methods and algorithms to be adapted for use with non-visible sensors, or for the development of completely new methods and systems. Computer Vision Beyond the Visible Spectrum is the first book to bring together state-of-the-art work in this area. It presents new & pioneering research across the electromagnetic spectrum in the military, commercial, and medical domains. By providing a detailed examination of each of these areas, it focuses on the development of state-of-the-art algorithms and looks at how they can be used to solve existing & new challenges within computer vision. Essential reading for academics & industrial researchers working in the area of computer vision, image processing, and medical imaging, it will also be useful background reading for advanced undergraduate & postgraduate students.
The material of this book encompasses many disciplines, including visible, infrared, far infrared, millimeter wave, microwave, radar, synthetic aperture radar, and electro-optical sensors as well as the very dynamic topics of image processing, computer vision and pattern recognition. This book is composed of six parts: * Advanced background modeling for surveillance * Advances in Tracking in Infrared imagery * Methods for Pose estimation in Ultrasound and LWIR imagery * Recognition in multi-spectral and synthetic aperture radar * Fusion of disparate sensors * Smart Sensors
Neural networks and fuzzy techniques are among the most promising approaches to pattern recognition. Neuro-fuzzy systems aim at combining the advantages of the two paradigms. This book is a collection of papers describing state-of-the-art work in this emerging field. It covers topics such as feature selection, classification, classifier training, and clustering. Also included are applications of neuro-fuzzy systems in speech recognition, land mine detection, medical image analysis, and autonomous vehicle control. The intended audience includes graduate students in computer science and related fields, as well as researchers at academic institutions and in industry.
Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities. Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization, prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The works presented in this book give insights into the creation of innovative improvements over algorithm performance, potential applications on various practical tasks, and combination of different techniques. The book provides a reference to researchers, practitioners, and students in both artificial intelligence and engineering communities, forming a foundation for the development of the field.
[FIRST EDITION] This accessible textbook presents an introduction to computer vision algorithms for industrially-relevant applications of X-ray testing. Features: introduces the mathematical background for monocular and multiple view geometry; describes the main techniques for image processing used in X-ray testing; presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image; examines a range of known X-ray image classifiers and classification strategies; discusses some basic concepts for the simulation of X-ray images and presents simple geometric and imaging models that can be used in the simulation; reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products; provides supporting material at an associated website, including a database of X-ray images and a Matlab toolbox for use with the book’s many examples.
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Throughout much of machine vision’s early years the infrared imagery has suffered from return on investment despite its advantages over visual counterparts. Recently, the ?scal momentum has switched in favor of both manufacturers and practitioners of infrared technology as a result of today’s rising security and safety challenges and advances in thermographic sensors and their continuous drop in costs. This yielded a great impetus in achieving ever better performance in remote surveillance, object recognition, guidance, noncontact medical measurements, and more. The purpose of this book is to draw attention to recent successful efforts made on merging computer vision applications (nonmilitary only) and nonvisual imagery, as well as to ?ll in the need in the literature for an up-to-date convenient reference on machine vision and infrared technologies. Augmented Perception in Infrared provides a comprehensive review of recent deployment of infrared sensors in modern applications of computer vision, along with in-depth description of the world’s best machine vision algorithms and intel- gent analytics. Its topics encompass many disciplines of machine vision, including remote sensing, automatic target detection and recognition, background modeling and image segmentation, object tracking, face and facial expression recognition, - variant shape characterization, disparate sensors fusion, noncontact physiological measurements, night vision, and target classi?cation. Its application scope includes homeland security, public transportation, surveillance, medical, and military. Mo- over, this book emphasizes the merging of the aforementioned machine perception applications and nonvisual imaging in intensi?ed, near infrared, thermal infrared, laser, polarimetric, and hyperspectral bands.
The four-volume set comprising LNCS volumes 3021/3022/3023/3024 constitutes the refereed proceedings of the 8th European Conference on Computer Vision, ECCV 2004, held in Prague, Czech Republic, in May 2004. The 190 revised papers presented were carefully reviewed and selected from a total of 555 papers submitted. The four books span the entire range of current issues in computer vision. The papers are organized in topical sections on tracking; feature-based object detection and recognition; geometry; texture; learning and recognition; information-based image processing; scale space, flow, and restoration; 2D shape detection and recognition; and 3D shape representation and reconstruction.
Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing.
This book and its sister volume constitute the proceedings of the 7th International Symposium on Neural Networks, ISNN 2010, held in Shanghai, China, June 6-9, 2010. The 170 revised full papers of Part I and Part II were carefully selected from 591 submissions and focus on topics such as SVM and Kernel Methods, Vision and Image, Data Mining and Text Analysis, BCI and Brain Imaging and its applications. The first volume, Part I (LNCS 6063) covers the following topics: Neuropysiological Foundation, Theory and Models, Learning and Inference, and Nerodynamics.