Download Free Identity Of Long Tail Entities In Text Book in PDF and EPUB Free Download. You can read online Identity Of Long Tail Entities In Text and write the review.

The digital era has generated a huge amount of data on the identities (profiles) of people, organizations and other entities in a digital format, largely consisting of textual documents such as news articles, encyclopedias, personal websites, books, and social media. Identity has thus been transformed from a philosophical to a societal issue, one requiring robust computational tools to determine entity identity in text. Computational systems developed to establish identity in text often struggle with long-tail cases. This book investigates how Natural Language Processing (NLP) techniques for establishing the identity of long-tail entities – which are all infrequent in communication, hardly represented in knowledge bases, and potentially very ambiguous – can be improved through the use of background knowledge. Topics covered include: distinguishing tail entities from head entities; assessing whether current evaluation datasets and metrics are representative for long-tail cases; improving evaluation of long-tail cases; accessing and enriching knowledge on long-tail entities in the Linked Open Data cloud; and investigating the added value of background knowledge (“profiling”) models for establishing the identity of NIL entities. Providing novel insights into an under-explored and difficult NLP challenge, the book will be of interest to all those working in the field of entity identification in text.
Most people need textual or visual interfaces to help them make sense of Semantic Web data. In this book, the author investigates the problems associated with generating natural language summaries for structured data encoded as triples using deep neural networks. An end-to-end trainable architecture is proposed, which encodes the information from a set of knowledge graph triples into a vector of fixed dimensionality, and generates a textual summary by conditioning the output on this encoded vector. Different methodologies for building the required data-to-text corpora are explored to train and evaluate the performance of the approach. Attention is first focused on generating biographies, and the author demonstrates that the technique is capable of scaling to domains with larger and more challenging vocabularies. The applicability of the technique for the generation of open-domain Wikipedia summaries in Arabic and Esperanto – two under-resourced languages – is then discussed, and a set of community studies, devised to measure the usability of the automatically generated content by Wikipedia readers and editors, is described. Finally, the book explains an extension of the original model with a pointer mechanism that enables it to learn to verbalise in a different number of ways the content from the triples while retaining the capacity to generate words from a fixed target vocabulary. The evaluation of performance using a dataset encompassing all of English Wikipedia is described, with results from both automatic and human evaluation both of which highlight the superiority of the latter approach as compared to the original architecture.
The distributed setting of RDF stores in the cloud poses many challenges, including how to optimize data placement on the compute nodes to improve query performance. In this book, a novel benchmarking methodology is developed for data placement strategies; one that overcomes these limitations by using a data-placement-strategy-independent distributed RDF store to analyze the effect of the data placement strategies on query performance. Frequently used data placement strategies have been evaluated, and this evaluation challenges the commonly held belief that data placement strategies which emphasize local computation lead to faster query executions. Indeed, results indicate that queries with a high workload can be executed faster on hash-based data placement strategies than on, for example, minimal edge-cut covers. The analysis of additional measurements indicates that vertical parallelization (i.e., a well-distributed workload) may be more important than horizontal containment (i.e., minimal data transport) for efficient query processing. Two such data placement strategies are proposed: the first, found in the literature, is entitled overpartitioned minimal edge-cut cover, and the second is the newly developed molecule hash cover. Evaluation revealed a balanced query workload and a high horizontal containment, which lead to a high vertical parallelization. As a result, these strategies demonstrated better query performance than other frequently used data placement strategies. The book also tests the hypothesis that collocating small connected triple sets on the same compute node while balancing the amount of triples stored on the different compute nodes leads to a high vertical parallelization.
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.
The vast amount of data available on the web has led to the need for effective retrieval techniques to transform that data into usable machine knowledge. But the creation of integrated knowledge, especially knowledge about the same entity from different web data sources, is a challenging task requiring the solving of interoperability problems. This book addresses the problem of knowledge retrieval and integration from heterogeneous web sources, and proposes a holistic semantic knowledge retrieval and integration approach to creating knowledge graphs on-demand from diverse web sources. Semantic Web Technologies have evolved as a novel approach to tackle the problem of knowledge integration from heterogeneous data, but because of the Extraction-Transformation-Load approach that dominates the process, knowledge retrieval and integration from web data sources is either expensive, or full physical integration of the data is impeded by restricted access. Focusing on the representation of data from web sources as pieces of knowledge belonging to the same entity which can then be synthesized as a knowledge graph helps to solve interoperability conflicts and allow for a more cost-effective integration approach, providing a method that enables the creation of valuable insights from heterogeneous web data. Empirical evaluations to assess the effectiveness of this holistic approach provide evidence that the methodology and techniques proposed in this book help to effectively integrate the disparate knowledge spread over heterogeneous web data sources, and the book also demonstrates how three domain applications of law enforcement, job market analysis, and manufacturing, have been developed and managed using the approach.
Ontologies are the corner stone of data modeling and knowledge representation, and engineering an ontology is a complex task in which domain knowledge, ontological accuracy and computational properties need to be carefully balanced. As with any engineering task, the identification and documentation of common patterns is important, and Ontology Design Patterns (ODPs) provide ontology designers with a strong connection to requirements and a better communication of their semantic content and intent. This book, Advances in Pattern-Based Ontology Engineering, contains 23 extended versions of selected papers presented at the annual Workshop on Ontology Design and Patterns (WOP) between 2017 and 2020. This yearly event, which attracts a large number of researchers and professionals in the field of ontology engineering and ontology design patterns, covers issues related to quality aspects of ontology engineering and ODPs for data and knowledge representation, and is usually co-located with the International Semantic Web Conference (ISWC), apart from WOP 2020, which was held virtually due to the COVID-19 pandemic. Topics covered by the papers collected here focus on recent advances in ontology design and patterns, and range from a method to instantiate content patterns, through a proposal on how to document a content pattern, to a number of patterns emerging in ontology modeling in various situations and applications. The book provides an overview of important advances in ontology engineering and ontology design patterns, and will be of interest to all those working in the field.
Graph-based data formats are a flexible way of representing data – semantic data models in particular – where the schema is part of the data, and have become more popular and had some commercial success in recent years. Semantic data models are also the basis for the Semantic Web – a Web of data governed by open standards in which computer programs can freely access the data provided. This book is about checking the correctness of programs that can access semantic data. Although the flexibility of semantic data models is one of their greatest strengths, it can lead programmers to accidentally fail to account for unintuitive edge cases, leading to run-time errors or unintended side-effects during program execution. A program may even run for a long time before such an error occurs and the program crashes. Providing a type system is an established methodology for proving the absence of run-time errors in programs without requiring execution. The book defines type systems that can detect and avoid such run-time errors based on schema languages available for the Semantic Web. Using the Web Ontology Language (OWL) and its theoretic underpinnings i.e. description logics, and the Shapes Constraint Language (SHACL) in particular, the book defines systems that can provide type-safe data access to semantic data graphs. The book is divided into 3 parts: Part I contains an introduction and preliminaries; Part II covers type systems for the Semantic Web; and Part III includes related work and conclusions.
Social robots are embodied agents that perform knowledge-intensive tasks involving several kinds of information from different heterogeneous sources. This book, Engineering Background Knowledge for Social Robots, introduces a component-based architecture for supporting the knowledge-intensive tasks performed by social robots. The design was based on the requirements of a real socially-assistive robotic application, and all the components contribute to and benefit from the knowledge base which is its cornerstone. The knowledge base is structured by a set of interconnected and modularized ontologies which model the information, and is initially populated with linguistic, ontological and factual knowledge retrieved from Linked Open Data. Access to the knowledge base is guaranteed by Lizard, a tool providing software components, with an API for accessing facts stored in the knowledge base in a programmatic and object-oriented way. The author introduces two methods for engineering the knowledge needed by robots, a novel method for automatically integrating knowledge from heterogeneous sources with a frame-driven approach, and a novel empirical method for assessing foundational distinctions over Linked Open Data entities from a common-sense perspective. These effectively enable the evolution of the robot’s knowledge by automatically integrating information derived from heterogeneous sources and the generation of common-sense knowledge using Linked Open Data as an empirical basis. The feasibility and benefits of the architecture have been assessed through a prototype deployed in a real socially-assistive scenario, and the book presents two applications and the results of a qualitative and quantitative evaluation.
Linked Data is a method of publishing structured data to facilitate sharing, linking, searching and re-use. Many such datasets have already been published, but although their number and size continues to increase, the main objectives of linking and integration have not yet been fully realized, and even seemingly simple tasks, like finding all the available information for an entity, are still challenging. This book, Services for Connecting and Integrating Big Numbers of Linked Datasets, is the 50th volume in the series ‘Studies on the Semantic Web’. The book analyzes the research work done in the area of linked data integration, and focuses on methods that can be used at large scale. It then proposes indexes and algorithms for tackling some of the challenges, such as, methods for performing cross-dataset identity reasoning, finding all the available information for an entity, methods for ordering content-based dataset discovery, and others. The author demonstrates how content-based dataset discovery can be reduced to solving optimization problems, and techniques are proposed for solving these efficiently while taking the contents of the datasets into consideration. To order them in real time, the proposed indexes and algorithms have been implemented in a suite of services called LODsyndesis, in turn enabling the implementation of other high level services, such as techniques for knowledge graph embeddings, and services for data enrichment which can be exploited for machine-learning tasks, and which also improve the prediction of machine-learning problems.
The field of semantic computing is highly diverse, linking areas such as artificial intelligence, data science, knowledge discovery and management, big data analytics, e-commerce, enterprise search, technical documentation, document management, business intelligence, and enterprise vocabulary management. As such it forms an essential part of the computing technology that underpins all our lives today. This volume presents the proceedings of SEMANTiCS 2021, the 17th International Conference on Semantic Systems. As a result of the continuing Coronavirus restrictions, SEMANTiCS 2021 was held in a hybrid form in Amsterdam, the Netherlands, from 6 to 9 September 2021. The annual SEMANTiCS conference provides an important platform for semantic computing professionals and researchers, and attracts information managers, IT­architects, software engineers, and researchers from a wide range of organizations, such as research facilities, NPOs, public administrations and the largest companies in the world. The subtitle of the 2021 conference’s was “In the Era of Knowledge Graphs”, and 66 submissions were received, from which the 19 papers included here were selected following a rigorous single-blind reviewing process; an acceptance rate of 29%. Topics covered include data science, machine learning, logic programming, content engineering, social computing, and the Semantic Web, as well as the additional sub-topics of digital humanities and cultural heritage, legal tech, and distributed and decentralized knowledge graphs. Providing an overview of current research and development, the book will be of interest to all those working in the field of semantic systems.