Download Free Identity Control For Permanent Magnet Synchronous Motor Drives Book in PDF and EPUB Free Download. You can read online Identity Control For Permanent Magnet Synchronous Motor Drives and write the review.

Permanent magnet synchronous (PMS) motors stand at the forefront of electric motor development due to their energy saving capabilities and performance potential. The motors have been developed in response to mounting environmental crises and growing electricity prices, and they have enabled the emergence of motor drive applications like those found in electric and hybrid vehicles, fly by wire, and drones. Control of Permanent Magnet Synchronous Motors is a timely advancement along that path as the first comprehensive, self-contained, and thoroughly up-to-date book devoted solely to the control of PMS motors. It offers a deep and extended analysis, design, implementation, and performance evaluation of major motor control methods, including Vector, Direct Torque, Predictive, Deadbeat, and Combined Control, in a systematic and coherent manner. All major Sensorless Control and Parameter Estimation methods are also studied. The book places great emphasis on energy saving control schemes.
This book focuses on the control strategies for gearless permanent magnet synchronous motor traction elevators. Both basic principles and experimental evaluation have been addressed. This is achieved by providing in-depth study on a number of major topics such as speed detection at low-speed operation, starting torque strategy based on dichotomy and staircase methods, fuzzy self-tuning method, MPC and ADRC, etc. The comprehensive and systematic treatment of control strategies for cost-effective gearless PMSM traction elevators and practical issues are the major features of the book, which is particularly suited for readers who are interested to learn the control strategies for cost-effective gearless PMSM traction elevators. The book benefits researchers, engineers, and graduate students in the fields of ac motor drives and control strategies for cost-effective gearless PMSM traction elevators, etc.
Sensorless Control of Permanent Magnet Synchronous Machine Drives A comprehensive resource providing basic principles and state-of-the art developments in sensorless control technologies for permanent magnet synchronous machine drives Sensorless Control of Permanent Magnet Synchronous Machine Drives highlights the global research achievements over the last three decades and the sensorless techniques developed by the authors and their colleagues, and covers sensorless control techniques of permanent magnet machines, discussing issues and solutions. Many worked application examples are included to aid in practical understanding of concepts. Written by pioneering authors in the field, Sensorless Control of Permanent Magnet Synchronous Machine Drives covers topics such as: Permanent magnet brushless AC and DC drives Single three-phase, dual three-phase, and open winding machines Modern control theory based sensorless methods, covering model reference adaptive system, sliding mode observer, extended Kalman filter, and model predictive control Flux-linkage and back-EMF based methods for non-salient machines, and active flux-linkage and extended back-EMF methods for salient machines Pulsating and rotating high frequency sinusoidal and square wave signal injection methods with current or voltage response, at different reference frames, and selection of amplitude and frequency for injection signal Sensorless control techniques based on detecting third harmonic or zero-crossings of back-EMF waveforms Parasitic effects in fundamental and high frequency models, impacts on position estimation and compensation schemes, covering cross-coupling magnetic saturation, load effect, machine saliency and multiple saliencies Describing basic principles, examples, challenges, and practical solutions, Sensorless Control of Permanent Magnet Synchronous Machine Drives is a highly comprehensive resource on the subject for professionals working on electrical machines and drives, particularly permanent magnet machines, and researchers working on electric vehicles, wind power generators, household appliances, and industrial automation.
Despite two decades of massive strides in research and development on control strategies and their subsequent implementation, most books on permanent magnet motor drives still focus primarily on motor design, providing only elementary coverage of control and converters. Addressing that gap with information that has largely been disseminated only in journals and at conferences, Permanent Magnet Synchronous and Brushless DC Motor Drives is a long-awaited comprehensive overview of power electronic converters for permanent magnet synchronous machines and control strategies for variable-speed operation. It introduces machines, power devices, inverters, and control, and addresses modeling, implementation, control strategies, and flux weakening operations, as well as parameter sensitivity, and rotor position sensorless control. Suitable for both industrial and academic audiences, this book also covers the simulation, low cost inverter topologies, and commutation torque ripple of PM brushless DC motor drives. Simulation of the motor drives system is illustrated with MATLAB® codes in the text. This book is divided into three parts—fundamentals of PM synchronous and brushless dc machines, power devices, inverters; PM synchronous motor drives, and brushless dc motor drives. With regard to the power electronics associated with these drive systems, the author: Explores use of the standard three-phase bridge inverter for driving the machine, power factor correction, and inverter control Introduces space vector modulation step by step and contrasts with PWM Details dead time effects in the inverter, and its compensation Discusses new power converter topologies being considered for low-cost drive systems in PM brushless DC motor drives This reference is dedicated exclusively to PM ac machines, with a timely emphasis on control and standard, and low-cost converter topologies. Widely used for teaching at the doctoral level and for industrial audiences both in the U.S. and abroad, it will be a welcome addition to any engineer’s library.
The book focuses on position sensorless control for PMSM drives, addressing both basic principles and experimental evaluation. It provides an in-depth study on a number of major topics, such as model-based sensorless control, saliency-based sensorless control, position estimation error ripple elimination and acoustic noise reduction. Offering a comprehensive and systematic overview of position sensorless control and practical issues it is particularly suitable for readers interested in the sensorless control techniques for PMSM drives. The book is also a valuable resource for researchers, engineers, and graduate students in fields of ac motor drives and sensorless control.
HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.
To reduce the emissions of greenhouse gasses and maintain environmental sustainability, electric vehicles play a vital role in a modern energy-efficient environment. Permanent magnet synchronous motors (PMSMs) are widely employed in electric vehicle technology due to their high dynamic response, better torque-speed characteristics, noiseless operation, high power density, high efficiency and power factor as compared to other conventional motor drives. This book demonstrates the development of various control strategies and illustrates the dynamic performance intensification of a PMSM drive. To ensure the faster dynamic behaviour and flexibility in control under various operating conditions, the performance of a PMSM drive has been explained. Finally, control strategies have been executed through mathematical modelling and illustration of several case studies for optimal operation. Features: Introduces performance indicators in a self-controlled PMSM machine to justify the dynamic behaviour Discusses comparative performance study and optimization of the drive performance Provides a detailed comparative performance analysis between classical and fuzzy logic controllers in a PMSM drive Includes illustrations and case studies using mathematical modelling and real-time test results Discusses the state of the art in solar-powered energy-efficient PMSM drives with various issues This book is aimed at researchers, graduate students and libraries in electrical engineering with specialization in electric vehicles.
An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more advanced readers, are also presented. Focuses on the control of PM brushless DC motors, giving readers the foundations to the topic that they can build on through more advanced reading Systematically guides readers through the subject, introducing basic operational principles before moving on to advanced control algorithms and implementations Covers special issues, such as sensorless control, intelligent control, torque ripple reduction and hardware implementation, which also have applications to other types of motors Includes presentation files with lecture notes and Matlab 7 coding on a companion website for the book
Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.
Electric Motors and Drives: Fundamentals, Types and Applications, Fifth Edition is intended primarily for non-specialist users or students of electric motors and drives, but many researchers and specialist industrialists have also acknowledged its value in providing a clear understanding of the fundamentals. It bridges the gap between specialist textbooks (too analytical for the average user) and handbooks (full of detail but with little insight) providing an understanding of how each motor and drive system works. The fifth edition has been completely revised, updated and expanded. All of the most important types of motor and drive are covered, including d.c., induction, synchronous (including synchronous reluctance and salient Permanent Magnet), switched reluctance, and stepping. There has been significant innovation in this area since the fourth edition, particularly in the automotive, aircraft and industrial sectors, with novel motor topologies emerging, including hybrid designs that combine permanent magnet and reluctance effects. We now include a physical basis for understanding and quantifying torque production in these machines, and this leads to simple pictures that illuminate the control conditions required to optimise torque. The key converter topologies have been brought together, and the treatment of inverter switching strategies expanded. A new chapter is devoted to the treatment of Field Oriented control, reflecting its increasing importance for all a.c. motor drives. A unique physically-based approach is adopted which builds naturally on the understanding of motor behaviour developed earlier in the book: the largely non-mathematical treatment dispels much of the mystique surrounding what is often regarded as a difficult topic. - Helps users acquire knowledge and understanding of the capabilities and limitations of motors and drives without struggling through unnecessary math and theory - Presents updated material on the latest and most widely-used motors and drives, including brushless servo motors - Includes additional diagrams and worked examples throughout this updated edition - Includes a physical basis for the understanding and quantifying torque production