Download Free Identification Of Some New Generation Additives For Polymers Obtained In The Catalytic Hydrogenation Process Book in PDF and EPUB Free Download. You can read online Identification Of Some New Generation Additives For Polymers Obtained In The Catalytic Hydrogenation Process and write the review.

The identification of new generation additives such as plasticizers and hardeners applied mainly to some polymers and resins and obtained in the catalytic hydrogenation processes is presented. The new plasticizers di(n- and isononyl)cyclohexane-1,2-dicarboxylates (DINCH) were obtained by catalytic hydrogenation of the planar aromatic rings of the mixture of di(alkyl(C9))phthalates in the presence of the modified Ni catalyst. They may be used as a substitute for improving the flexibility of polymers, such as PVC, and also for strongly reducing the toxic effects on human health of the 1,2-di(alkyl)phthalates, which is easily released from the polymer to the environment. The identification of these types of compounds by GC/MS enables to determine the structures of the main products such as cis and trans isomers of the cyclohexane-1,2-dicarboxylates. GC/MS may be applied to the identification of some DINCH constituents extracted from polymers. Also, the analysis of these compounds by ESI/MS gives information about their mass fragmentation and enables their detection, although without differentiation between individual cis and trans isomers.
Hydrogen is one of the abundant elements on earth majorly in the form of water (H2O) and mainly as hydrogen gas (H2). Catalytic hydrogenation is a key reaction that has versatile applications in different industries. The main objective of this book is to bring together various applications of hydrogenation through the perspective of leading researchers in the field. This book is intended to be used as a graduate-level text book or as a practical guide for industrial engineers.
Provides an overview of the family of polyester polymers which comprise an important group of plastics that span the range of commodity polymers to engineering resins. It describes the preparation, properties and applications of polyesters. Readers will also find details on polyester-based elastomers, biodegradable aliphatic polyester, liquid crystal polyesters and unsaturated polyesters for glass-reinforced composites. Presents an overview of the most recent developments. Explores synthesis, catalysts, processes, properties and applications. Looks at emerging polyester materials as well as existing ones. Written by foremost experts from both academia and industry, ensuring that both fundamentals and practical applications are covered.
With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
This book describes how man-made litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers contributed to the broad awareness of marine litter as a problem of global significance. The authors summarise more than five decades of marine litter research, which receives growing attention after the recent discovery of great oceanic garbage patches and the ubiquity of microscopic plastic particles in marine organisms and habitats. In 16 chapters, authors from all over the world have created a universal view on the diverse field of marine litter pollution, the biological impacts, dedicated research activities, and the various national and international legislative efforts to combat this environmental problem. They recommend future research directions necessary for a comprehensive understanding of this environmental issue and the development of efficient management strategies. This book addresses scientists, and it provides a solid knowledge base for policy makers, NGOs, and the broader public.
Ames Laboratory, Iowa, USA
Homogeneous hydrogenation is one of the most thoroughly studied fields of homogeneous catalysis. The results of these studies have proved to be most important for an understanding of the underlying principles of the activation of small molecules by transition metal complexes. During the past three decades homogeneous hydrogenation has found widespread application in organic chemistry, including the production of important pharmaceuticals, especially where a sophisticated degree of selectivity is required. This volume presents a general account of the main principles and applications of homogeneous hydrogenation by transition metal complexes. Special attention is devoted to the mechanisms by which these processes occur, and the role of the recently discovered complexes of molecular hydrogen is described. Sources of hydrogen, other than H2, are also considered (transfer hydrogenation). The latest achievements in highly stereoselective hydrogenations have made possible many new applications in organic synthesis. These applications are documented by giving details of the reduction of important unsaturated substrates (alkenes, alkynes, aldehydes and ketones, nitrocompounds, etc.). Hydrogenation in biphasic and phase transfer catalyzed systems is also described. Finally, a discussion of the biochemical routes of H2 activation highlights the similarities and differences in performing hydrogenation in both natural and synthetic systems. For researchers working in the fields of homogeneous catalysis, especially in areas such as pharmaceuticals, plastics and fine chemicals.
In chemical processes, the progressive deactivation of solid catalysts is a major economic concern and mastering their stability has become as essential as controlling their activity and selectivity. For these reasons, there is a strong motivation to understand the mechanisms leading to any loss in activity and/or selectivity and to find out the efficient preventive measures and regenerative solutions that open the way towards cheaper and cleaner processes. This book covers in a comprehensive way both the fundamental and applied aspects of solid catalyst deactivation and encompasses the state-of-the-art in the field of reactions catalyzed by zeolites. This particular choice is justified by the widespread use of molecular sieves in refining, petrochemicals and organic chemicals synthesis processes, by the large variety in the nature of their active sites (acid, base, acid-base, redox, bifunctional) and especially by their peculiar features, in terms of crystallinity, structural order and textural properties, which make them ideal models for heterogeneous catalysis. The aim of this book is to be a critical review in the field of zeolite deactivation and regeneration, by collecting a series of contributions by experts in the field which describe the factors, explain the techniques to study the causes and suggest methods to prevent (or limit) catalyst deactivation. At the same time, an anthology of commercial processes and exemplar cases provides the reader with theoretical insights and practical hints on the deactivation mechanisms and draws attention to the key role played by the loss of activity on process design and industrial practice.
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. New discussion of conceptual plant design, flowsheet development and revamp design Significantly increased coverage of capital cost estimation, process costing and economics New chapters on equipment selection, reactor design and solids handling processes New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography Increased coverage of batch processing, food, pharmaceutical and biological processes All equipment chapters in Part II revised and updated with current information Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards Additional worked examples and homework problems The most complete and up to date coverage of equipment selection 108 realistic commercial design projects from diverse industries A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors