Download Free Idaho National Laboratory Fuel Reprocessing Complex Historic American Engineering Record Report Id 33 H Book in PDF and EPUB Free Download. You can read online Idaho National Laboratory Fuel Reprocessing Complex Historic American Engineering Record Report Id 33 H and write the review.

For nearly four decades, the Fuel Reprocessing Complex (Buildings CPP-601, CPP-603, CPP-627, CPP-640) at the Idaho Chemical Processing Plant (ICPP) recovered usable uranium from spent reactor fuel. The facility was constantly evolving to process new types of spent nuclear fuel and would eventually process materials from nearly 100 different reactors. Research and test reactors located at the National Reactor Testing Station supplied a large proportion of the fuel load for the facility, along with nearly all of the fuel cores that had powered the United States Navy's fleet of nuclear submarines and surface ships. Fuels clad in aluminum, zirconium, stainless steel, and graphite were routinely processed at the plant. Custom processing capabilities were also developed through the years and a variety of valuable isotopes and inert gases were isolated and shipped to research laboratories across the country. AS ICPP scientists developed the facilities and the skills necessary to reprocess highly enriched fuels from so many different sources, they also came up with many general improvements and scientific advances in fuel reprocessing techniques and waste management as a whole. In 1992, when changing political tides and lowered demand for uranium caused the Department of Energy to halt all fuel reprocessing efforts across the country, approximately 31,432 kg of uranium had been successfully recovered at the Idaho Chemical Processing Plant. The four main buildings that housed the complex fuel reprocessing operation now await decontamination and demolition.
The reactors around the world have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts worldwide. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). This publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term.
The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the longterm risks associated with nuclear power generation.
Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.
"In this analysis we have presented a method that provides insight into future fuel cycle alternatives by clarifying the complexity of choosing an appropriate fuel cycle in the context of the distribution of burdens and benefits between generations. The current nuclear power deployment practices, together with three future fuel cycles were assessed."--Page 227.
Plutonium and highly enriched uranium (HEU) are the basic materials used in nuclear weapons. Plutonium also plays an important part in the generation of nuclear electricity. Knowing how much plutonium and HEU exists, where and in which form is vital for international security and nuclear commerce. This book is a thorough revision of the World Inventory of Plutonium and highly Enriched Uranium, 1992. It provides a rigorous and comprehensive assessment of the amounts of plutonium and HEU in military and civilian programmes, in nuclear and non-nuclear weapon states, and in countries seeking to acquire nuclear weapons. The capibilities that exist for producing these materials around the world are examined in depth, as are the policy issues raised by them. Containing much new information, this book is indispensable to all those concerned with the great contemporary issues in international nuclear relations: arms reductions in the nuclear weapon states, nuclear proliferation, nuclear smuggling, the roles of plutonium and enriched uranium in the nuclear fuel-cycle, and the disposition of surplus weapon material.
The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications.