Download Free Icons Of Mathematics An Exploration Of Twenty Key Images Book in PDF and EPUB Free Download. You can read online Icons Of Mathematics An Exploration Of Twenty Key Images and write the review.

The authors present twenty icons of mathematics, that is, geometrical shapes such as the right triangle, the Venn diagram, and the yang and yin symbol and explore mathematical results associated with them. As with their previous books (Charming Proofs, When Less is More, Math Made Visual) proofs are visual whenever possible. The results require no more than high-school mathematics to appreciate and many of them will be new even to experienced readers. Besides theorems and proofs, the book contains many illustrations and it gives connections of the icons to the world outside of mathematics. There are also problems at the end of each chapter, with solutions provided in an appendix. The book could be used by students in courses in problem solving, mathematical reasoning, or mathematics for the liberal arts. It could also be read with pleasure by professional mathematicians, as it was by the members of the Dolciani editorial board, who unanimously recommend its publication.
Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. Courses in solid geometry have largely disappeared from American high schools and colleges. The authors are convinced that a mathematical exploration of three-dimensional geometry merits some attention in today’s curriculum. A Mathematical Space Odyssey: Solid Geometry in the 21st Century is devoted to presenting techniques for proving a variety of mathematical results in three-dimensional space, techniques that may improve one’s ability to think visually. Special attention is given to the classical icons of solid geometry (prisms, pyramids, platonic solids, cones, cylinders, and spheres) and many new and classical results: Cavalieri’s principle, Commandino’s theorem, de Gua’s theorem, Prince Rupert’s cube, the Menger sponge, the Schwarz lantern, Euler’s rotation theorem, the Loomis-Whitney inequality, Pythagorean theorems in three dimensions, etc. The authors devote a chapter to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. In addition to many figures illustrating theorems and their proofs, a selection of photographs of three-dimensional works of art and architecture are included. Each chapter includes a selection of Challenges for the reader to explore further properties and applications. It concludes with solutions to all the Challenges in the book, references, and a complete index. Readers should be familiar with high school algebra, plane and analytic geometry, and trigonometry. While brief appearances of calculus do occur, no knowledge of calculus is necessary to enjoy this book.
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.
Historical introduction -- The Riemann integral -- The Darboux integral -- A functional zoo -- Another approach : measure theory -- The Lebesgue integral -- The Gauge integral -- Stieltjes-type integrals and extensions -- A look back -- Afterword : L2 spaces and Fourier series
This is the first comprehensive monograph to thoroughly investigate constant width bodies, which is a classic area of interest within convex geometry. It examines bodies of constant width from several points of view, and, in doing so, shows surprising connections between various areas of mathematics. Concise explanations and detailed proofs demonstrate the many interesting properties and applications of these bodies. Numerous instructive diagrams are provided throughout to illustrate these concepts. An introduction to convexity theory is first provided, and the basic properties of constant width bodies are then presented. The book then delves into a number of related topics, which include Constant width bodies in convexity (sections and projections, complete and reduced sets, mixed volumes, and further partial fields) Sets of constant width in non-Euclidean geometries (in real Banach spaces, and in hyperbolic, spherical, and further non-Euclidean spaces) The concept of constant width in analysis (using Fourier series, spherical integration, and other related methods) Sets of constant width in differential geometry (using systems of lines and discussing notions like curvature, evolutes, etc.) Bodies of constant width in topology (hyperspaces, transnormal manifolds, fiber bundles, and related topics) The notion of constant width in discrete geometry (referring to geometric inequalities, packings and coverings, etc.) Technical applications, such as film projectors, the square-hole drill, and rotary engines Bodies of Constant Width: An Introduction to Convex Geometry with Applications will be a valuable resource for graduate and advanced undergraduate students studying convex geometry and related fields. Additionally, it will appeal to any mathematicians with a general interest in geometry.
Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer.
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
A Cornucopia of Quadrilaterals collects and organizes hundreds of beautiful and surprising results about four-sided figures—for example, that the midpoints of the sides of any quadrilateral are the vertices of a parallelogram, or that in a convex quadrilateral (not a parallelogram) the line through the midpoints of the diagonals (the Newton line) is equidistant from opposite vertices, or that, if your quadrilateral has an inscribed circle, its center lies on the Newton line. There are results dating back to Euclid: the side-lengths of a pentagon, a hexagon, and a decagon inscribed in a circle can be assembled into a right triangle (the proof uses a quadrilateral and circumscribing circle); and results dating to Erdős: from any point in a triangle the sum of the distances to the vertices is at least twice as large as the sum of the distances to the sides. The book is suitable for serious study, but it equally rewards the reader who dips in randomly. It contains hundreds of challenging four-sided problems. Instructors of number theory, combinatorics, analysis, and geometry will find examples and problems to enrich their courses. The authors have carefully and skillfully organized the presentation into a variety of themes so the chapters flow seamlessly in a coherent narrative journey through the landscape of quadrilaterals. The authors' exposition is beautifully clear and compelling and is accessible to anyone with a high school background in geometry.
Insightful overview of many kinds of algebraic structures that are ubiquitous in mathematics. For researchers at graduate level and beyond.
MAA guides series numbering on title page appears as # 49. It should read # 9.