Download Free Ice Distribution Southern Hemisphere Book in PDF and EPUB Free Download. You can read online Ice Distribution Southern Hemisphere and write the review.

This is the first comprehensive and critical evaluation of the biome (large-scale, functional biotic communities) patterns in the Southern Hemisphere. Revising the Heinrich Walter's zonobiome system for the Southern Hemisphere appeared as necessary because of the bioclimatic imbalance between the Hemispheres. This revision resulted in formulation of a new zonobiome system, considering the geographic peculiarities of both Hemispheres, hence creating a new, powerful tool of global nature-resource survey and conservation. The system has a potential to attract the interest of the global climate modeling community as the concept of biome (and associated hierarchical system) has a strong functional focus. All zonal biomes of the Southern Hemisphere are featured, and the major challenges we face in understanding their origins, structure, and functioning are discussed. The book contains a wealth of original data resulting from collation of bioclimatic data and vegetation mapping.
Global environmental change is one of the most pressing international issues of the next century. There is a need to monitor the Earth's vital signs, from atmospheric ozone to tropical deforestation to sea level change. Models used to predict global changes have not yet fully used global observational data sets. Satellite data sets will be vital in addressing global change issues, in determining natural variability and monitoring global and regional changes. This timely volume provides an illustration of the variety of satellite-derived global data sets now available, their uses, advantages and limitations, and the range of variation that has already been observed with these data. A team of distinguished contributors provide a highly illustrated and accessible account suitable for the general scientific reader.
Based on the proceedings of the NATO Advanced Study Institute on Air-Sea-Ice Interaction held September 28-October 10, 1981 in Acquafredda di maratea, Italy. Intent is to present the topic of sea ice in the broad and interdisciplinary context of atmospheric and oceanographic science.
Warren M. Washington is consultant and advisor to a number of government officials and committees on climate-system modelling. Now along with Claire Parkinson (NASA) he gives the reader insight into the complex field of climate modelling. Updated and revised from the first edition, this book is a welcome reference on climate modeling; an area that is becoming more and more sought after in light of environmental changes. Suitable for those wanting an in-road into understanding climate modeling but also an excellent companion for those with some prior knowledge of modeling meteorological systems.
As the Arctic perennial sea ice continues to disappear at an alarming rate, a full understanding of sea ice as a crucial global ecosystem, and the effects of its loss is vital for all those working with and studying global climate change. Building on the success of the previous edition, the second edition of Sea Ice, now much expanded and in full colour throughout, includes six completely new chapters with complete revisions of all the chapters included from the first edition. The Editors, Professor David Thomas and Dr Gerhard Dieckmann have once again drawn together an extremely impressive group of internationally respected contributing authors, ensuring a comprehensive worldwide coverage of this incredibly important topic. Sea Ice, second edition, is an essential purchase for oceanographers and marine scientists, environmental scientists, biologists, geochemists and geologists. All those involved in the study of global climate change will find this book to contain a wealth of important information. All libraries in universities and research establishments where these subjects are studied and taught will need multiple copies of this book on their shelves. truly multidisciplinary approach world leading authors and editors international in scope, covering both Arctic and Antarctic work of vital interest to all those involved in global warming and climate change research highly illustrated full colour book with colour images throughout
Raymond S. Bradley provides his readers with a comprehensive and up-to-date review of all of the important methods used in paleoclimatic reconstruction, dating and paleoclimate modeling. Two comprehensive chapters on dating methods provide the foundation for all paleoclimatic studies and are followed by up-to-date coverage of ice core research, continental geological and biological records, pollen analysis, radiocarbon dating, tree rings and historical records. New methods using alkenones in marine sediments and coral studies are also described. Paleoclimatology, Second Edition, is an essential textbook for advanced undergraduate and postgraduate students studying climatology, paleoclimatology and paleooceanography worldwide, as well as a valuable reference for lecturers and researchers, appealing to archaeologists and scientists interested in environmental change. * Contains two up-to-date chapters on dating methods* Consists of the latest coverage of ice core research, marine sediment and coral studies, continental geological and biological records, pollen analysis, tree rings, and historical records* Describes the newest methods using alkenones in marine sediments and long continental pollen records* Addresses all important methods used in paleoclimatic reconstruction* Includes an extensive chapter on the use of models in paleoclimatology* Extensive and up-to-date bibliography* Illustrated with numerous comprehensive figure captions
Sea ice, which covers up to 7% of the planet’s surface, is a major component of the world’s oceans, partly driving ocean circulation and global climate patterns. It provides a habitat for a rich diversity of marine organisms, and is an extremely valuable source of information in studies of global climate change and the evolution of present day life forms. Increasingly sea ice is being used as a proxy for extraterrestrial ice covered systems. Sea Ice provides a comprehensive review of our current available knowledge of polar pack ice, the study of which is severely constrained by the logistic difficulties of working in such harsh and remote regions of the earth. The book’s editors, Drs Thomas and Dieckmann have drawn together an impressive group of international contributing authors, providing a well-edited and integrated volume, which will stand for many years as the standard work on the subject. Contents of the book include details of the growth, microstructure and properties of sea ice, large-scale variations in thickness and characteristics, its primary production, micro-and macrobiology, sea ice as a habitat for birds and mammals, sea ice biogeochemistry, particulate flux, and the distribution and significance of palaeo sea ice. Sea Ice is an essential purchase for oceanographers and marine scientists, environmental scientists, biologists, geochemists and geologists. All those involved in the study of global climate change will find this book to contain a wealth of important information. All libraries in universities and research establishments where these subjects are studied and taught will need multiple copies on their shelves. David Thomas is at the School of Ocean Sciences, University of Wales, Bangor, UK. Gerhard Dieckmann is at the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
Data from the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite are used to determine the extent and distribution of Antarctic sea ice. The characteristics of the southern ocean, the mathematical formulas used to obtain quantitative sea ice concentrations, the general characteristics of the seasonal sea ice growth/decay cycle and regional differences, and the observed seasonal growth/decay cycle for individual years and interannual variations of the ice cover are discussed. The sea ice data from the ESMR are presented in the form of color-coded maps of the Antarctic and the southern oceans. The maps show brightness temperatures and concentrations of pack ice averaged for each month, 4-year monthly averages, and month-to-month changes. Graphs summarizing the results, such as areas of sea ice as a function of time in the various sectors of the southern ocean are included. The images demonstrate that satellite microwave data provide unique information on large-scale sea ice conditions for determining climatic conditions in polar regions and possible global climatic changes.