Download Free Ibm Data Warehousing Book in PDF and EPUB Free Download. You can read online Ibm Data Warehousing and write the review.

In this IBM Redbooks publication we describe and demonstrate dimensional data modeling techniques and technology, specifically focused on business intelligence and data warehousing. It is to help the reader understand how to design, maintain, and use a dimensional model for data warehousing that can provide the data access and performance required for business intelligence. Business intelligence is comprised of a data warehousing infrastructure, and a query, analysis, and reporting environment. Here we focus on the data warehousing infrastructure. But only a specific element of it, the data model - which we consider the base building block of the data warehouse. Or, more precisely, the topic of data modeling and its impact on the business and business applications. The objective is not to provide a treatise on dimensional modeling techniques, but to focus at a more practical level. There is technical content for designing and maintaining such an environment, but also business content. For example, we use case studies to demonstrate how dimensional modeling can impact the business intelligence requirements for your business initiatives. In addition, we provide a detailed discussion on the query aspects of BI and data modeling. For example, we discuss query optimization and how you can determine performance of the data model prior to implementation. You need a solid base for your data warehousing infrastructure . . . . a solid data model.
To make better informed business decisions, better serve clients, and increase operational efficiencies, you must be aware of changes to key data as they occur. In addition, you must enable the immediate delivery of this information to the people and processes that need to act upon it. This ability to sense and respond to data changes is fundamental to dynamic warehousing, master data management, and many other key initiatives. A major challenge in providing this type of environment is determining how to tie all the independent systems together and process the immense data flow requirements. IBM® InfoSphere® Change Data Capture (InfoSphere CDC) can respond to that challenge, providing programming-free data integration, and eliminating redundant data transfer, to minimize the impact on production systems. In this IBM Redbooks® publication, we show you examples of how InfoSphere CDC can be used to implement integrated systems, to keep those systems updated immediately as changes occur, and to use your existing infrastructure and scale up as your workload grows. InfoSphere CDC can also enhance your investment in other software, such as IBM DataStage® and IBM QualityStage®, IBM InfoSphere Warehouse, and IBM InfoSphere Master Data Management Server, enabling real-time and event-driven processes. Enable the integration of your critical data and make it immediately available as your business needs it.
Reviews planning and designing architecture and implementing the data warehouse. Includes discussions on how and why to apply IBM tools. Offers tips, tricks, and workarounds to ensure maximum performance. Companion Web site includes technical notes, product updates, corrections, and links to relevant material and training.
The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.
Build end-to-end AI solutions with IBM Cloud Pak for Data to operationalize AI on a secure platform based on cloud-native reliability, cost-effective multitenancy, and efficient resource management Key FeaturesExplore data virtualization by accessing data in real time without moving itUnify the data and AI experience with the integrated end-to-end platformExplore the AI life cycle and learn to build, experiment, and operationalize trusted AI at scaleBook Description Cloud Pak for Data is IBM's modern data and AI platform that includes strategic offerings from its data and AI portfolio delivered in a cloud-native fashion with the flexibility of deployment on any cloud. The platform offers a unique approach to addressing modern challenges with an integrated mix of proprietary, open-source, and third-party services. You'll begin by getting to grips with key concepts in modern data management and artificial intelligence (AI), reviewing real-life use cases, and developing an appreciation of the AI Ladder principle. Once you've gotten to grips with the basics, you will explore how Cloud Pak for Data helps in the elegant implementation of the AI Ladder practice to collect, organize, analyze, and infuse data and trustworthy AI across your business. As you advance, you'll discover the capabilities of the platform and extension services, including how they are packaged and priced. With the help of examples present throughout the book, you will gain a deep understanding of the platform, from its rich capabilities and technical architecture to its ecosystem and key go-to-market aspects. By the end of this IBM book, you'll be able to apply IBM Cloud Pak for Data's prescriptive practices and leverage its capabilities to build a trusted data foundation and accelerate AI adoption in your enterprise. What you will learnUnderstand the importance of digital transformations and the role of data and AI platformsGet to grips with data architecture and its relevance in driving AI adoption using IBM's AI LadderUnderstand Cloud Pak for Data, its value proposition, capabilities, and unique differentiatorsDelve into the pricing, packaging, key use cases, and competitors of Cloud Pak for DataUse the Cloud Pak for Data ecosystem with premium IBM and third-party servicesDiscover IBM's vibrant ecosystem of proprietary, open-source, and third-party offerings from over 35 ISVsWho this book is for This book is for data scientists, data stewards, developers, and data-focused business executives interested in learning about IBM's Cloud Pak for Data. Knowledge of technical concepts related to data science and familiarity with data analytics and AI initiatives at various levels of maturity are required to make the most of this book.
This IBM® Redbooks® publication describes how the IBM Big Data Platform provides the integrated capabilities that are required for the adoption of Information Governance in the big data landscape. As organizations embark on new use cases, such as Big Data Exploration, an enhanced 360 view of customers, or Data Warehouse modernization, and absorb ever growing volumes and variety of data with accelerating velocity, the principles and practices of Information Governance become ever more critical to ensure trust in data and help organizations overcome the inherent risks and achieve the wanted value. The introduction of big data changes the information landscape. Data arrives faster than humans can react to it, and issues can quickly escalate into significant events. The variety of data now poses new privacy and security risks. The high volume of information in all places makes it harder to find where these issues, risks, and even useful information to drive new value and revenue are. Information Governance provides an organization with a framework that can align their wanted outcomes with their strategic management principles, the people who can implement those principles, and the architecture and platform that are needed to support the big data use cases. The IBM Big Data Platform, coupled with a framework for Information Governance, provides an approach to build, manage, and gain significant value from the big data landscape.
Together, big data and analytics have tremendous potential to improve the way we use precious resources, to provide more personalized services, and to protect ourselves from unexpected and ill-intentioned activities. To fully use big data and analytics, an organization needs a system of insight. This is an ecosystem where individuals can locate and access data, and build visualizations and new analytical models that can be deployed into the IT systems to improve the operations of the organization. The data that is most valuable for analytics is also valuable in its own right and typically contains personal and private information about key people in the organization such as customers, employees, and suppliers. Although universal access to data is desirable, safeguards are necessary to protect people's privacy, prevent data leakage, and detect suspicious activity. The data reservoir is a reference architecture that balances the desire for easy access to data with information governance and security. The data reservoir reference architecture describes the technical capabilities necessary for a system of insight, while being independent of specific technologies. Being technology independent is important, because most organizations already have investments in data platforms that they want to incorporate in their solution. In addition, technology is continually improving, and the choice of technology is often dictated by the volume, variety, and velocity of the data being managed. A system of insight needs more than technology to succeed. The data reservoir reference architecture includes description of governance and management processes and definitions to ensure the human and business systems around the technology support a collaborative, self-service, and safe environment for data use. The data reservoir reference architecture was first introduced in Governing and Managing Big Data for Analytics and Decision Makers, REDP-5120, which is available at: http://www.redbooks.ibm.com/redpieces/abstracts/redp5120.html. This IBM® Redbooks publication, Designing and Operating a Data Reservoir, builds on that material to provide more detail on the capabilities and internal workings of a data reservoir.
Up-to-date, comprehensive coverage of the Oracle database and business intelligence tools Written by a team of Oracle insiders, this authoritative book provides you with the most current coverage of the Oracle data warehousing platform as well as the full suite of business intelligence tools. You'll learn how to leverage Oracle features and how those features can be used to provide solutions to a variety of needs and demands. Plus, you'll get valuable tips and insight based on the authors' real-world experiences and their own implementations. Avoid many common pitfalls while learning best practices for: Leveraging Oracle technologies to design, build, and manage data warehouses Integrating specific database and business intelligence solutions from other vendors Using the new suite of Oracle business intelligence tools to analyze data for marketing, sales, and more Handling typical data warehouse performance challenges Uncovering initiatives by your business community, security business sponsorship, project staffing, and managing risk
The Easy, Visual Introduction to IBM DB2 Version 10.5 for Linux, UNIX, and Windows Foreword by Judy Huber, Vice President, Distributed Data Servers and Data Warehousing; Director, IBM Canada Laboratory This book covers everything you need to get productive with the latest version of IBM DB2 and apply it to today’s business challenges. It discusses key features introduced in DB2 Versions 10.5, 10.1, and 9.7, including improvements in manageability, integration, security, Big Data support, BLU Acceleration, and cloud computing. DB2 Essentials illuminates key concepts with examples drawn from the authors’ extensive experience with DB2 in enterprise environments. Raul F. Chong and Clara Liu explain how DB2 has evolved, what’s new, and how to choose the right products, editions, and tools. Next, they walk through installation, configuration, security, data access, remote connectivity, and day-to-day administration. Each chapter starts with an illustrative overview to introduce its key concepts using a big picture approach. Clearly explained figures are used extensively, and techniques are presented with intuitive screenshots, diagrams, charts, and tables. Case studies illustrate how “theory” is applied in real-life environments, and hundreds of review questions help you prepare for IBM’s newest DB2 certification exams. Coverage includes • Understanding the role of DB2 in Big Data • Preparing for and executing a smooth installation or upgrade • Understanding the DB2 environment, instances, and databases • Configuring client and server connectivity • Working with database objects • Getting started with BLU Acceleration • Implementing security: authentication and authorization • Understanding concurrency and locking • Maintaining, backing up, and recovering data • Using basic SQL in DB2 environments • Diagnosing and solving DB2 problems This book is for anyone who plans to work with DB2, including DBAs, system administrators, developers, and consultants. It will be a great resource whether you’re upgrading from an older version of DB2, migrating from a competitive database, or learning your first database platform.