Download Free I Want To Be A Mathematician An Automathography Book in PDF and EPUB Free Download. You can read online I Want To Be A Mathematician An Automathography and write the review.

A collection of math problems for people of varying skills from high school through professional level, organized into fourteen categories, such as matrices, space, probability, and puzzles, and including hints and solutions.
This classic guide contains four essays on writing mathematical books and papers at the research level and at the level of graduate texts. The authors are all well known for their writing skills, as well as their mathematical accomplishments. The first essay, by Steenrod, discusses writing books, either monographs or textbooks. He gives both general and specific advice, getting into such details as the need for a good introduction. The longest essay is by Halmos, and contains many of the pieces of his advice that are repeated even today: In order to say something well you must have something to say; write for someone; think about the alphabet. Halmos's advice is systematic and practical. Schiffer addresses the issue by examining four types of mathematical writing: research paper, monograph, survey, and textbook, and gives advice for each form of exposition. Dieudonne's contribution is mostly a commentary on the earlier essays, with clear statements of where he disagrees with his coauthors. The advice in this small book will be useful to mathematicians at all levels.
This book will help those wishing to teach a course in technical writing, or who wish to write themselves.
This book, based on Pólya's method of problem solving, aids students in their transition to higher-level mathematics. It begins by providing a great deal of guidance on how to approach definitions, examples, and theorems in mathematics and ends by providing projects for independent study. Students will follow Pólya's four step process: learn to understand the problem; devise a plan to solve the problem; carry out that plan; and look back and check what the results told them.
Nick Higham follows up his successful HWMS volume with this much-anticipated second edition.
Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.
David Miller is the foremost exponent of the purist critical rationalist doctrine and here presents his mature views, discussing the role that logic and argument play in the growth of knowledge, criticizing the common understanding of argument as an instrument of justification, persuasion or discovery and instead advocating the critical rationalist view that only criticism matters. Miller patiently and thoroughly undoes the damage done by those writers who attack critical rationalism by invoking the sterile mythology of induction and justification that it seeks to sweep away. In addition his new material on the debate on verisimilitude is essential reading for all working in this field.
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet