Download Free I Lignin Plastics Ii Paper Base Plastics Book in PDF and EPUB Free Download. You can read online I Lignin Plastics Ii Paper Base Plastics and write the review.

The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs
Covers the entire evolutionary spectrum of biomass, from its genetic modification and harvesting, to conversion technologies, life cycle analysis, and its value to the current global economy This original textbook introduces readers to biomass—a renewable resource derived from forest, agriculture, and organic-based materials—which has attracted significant attention as a sustainable alternative to petrochemicals for large-scale production of fuels, materials, and chemicals. The current renaissance in the manipulation and uses of biomass has been so abrupt and focused, that very few educational textbooks actually cover these topics to any great extent. That’s why this interdisciplinary text is a welcome resource for those seeking a better understanding of this new discipline. It combines the underpinning science of biomass with technology applications and sustainability considerations to provide a broad focus to its readers. Introduction to Renewable Biomaterials: First Principles and Concepts consists of eight chapters on the following topics: fundamental biochemical & biotechnological principles; principles and methodologies controlling plant growth and silviculture; fundamental science and engineering considerations; critical considerations and strategies for harvesting; first principles of pretreatment; conversion technologies; characterization methods and techniques; and life cycle analysis. Each chapter includes a glossary of terms, two to three problem sets, and boxes to highlight novel discoveries and instruments. Chapters also offer questions for further consideration and suggestions for further reading. Developed from a successful USDA funded course, run by a partnership of three US universities: BioSUCEED - BioProducts Sustainability, a University Cooperative Center for Excellence in Education Covers the entire evolutionary spectrum of biomass, from genetic modification to life cycle analysis Presents the key chemistry, biology, technology, and sustainability aspects of biomaterials Edited by a highly regarded academic team, with extensive research and teaching experience in the field Introduction to Renewable Biomaterials: First Principles and Concepts is an ideal text for advanced academics and industry professionals involved with biomass and renewable resources, bioenergy, biorefining, biotechnology, materials science, sustainable chemistry, chemical engineering, crop science and technology, agriculture.
Circularity of Plastics: Sustainability, Emerging Materials, and Valorization of Waste Plastic takes an innovative, interdisciplinary approach to circularity and sustainability in plastics, with an emphasis on plastic waste and end-of-life treatment and options for recycling, re-use, valorization and development of biomass-based polymers. The book introduces key concepts of sustainable materials, the circular economy, and lifecycle assessment, and discusses challenges in the valorization of waste. Other sections cover the upcycling of waste plastic into new materials and fuels, with dedicated chapters exploring state-of-the-art techniques for conversion to new sustainable polymers, fuel, fine chemicals and carbon nanomaterials. Emerging technologies used to produce functional polymers from renewable feedstocks, including CO2, biomass, natural polymers, polylactic acid (PLA), and polyhydroxyalkanoate-based materials (PHAs) are then explored, with a final chapter focusing on applications of sustainable materials, challenges, and future perspectives. This is a valuable resource for researchers, scientists, engineers, R&D professionals, and advanced students from a range of disciplines and backgrounds, with an interest in sustainable materials, circularity in plastics, and polymer waste and valorization. - Explains the fundamental concepts of sustainable materials, circular economy, lifecycle assessment, and valorization of plastic waste - Presents cutting-edge methods for the conversion or upcycling of waste to sustainable polymers, fuel and fine chemicals, and carbon nanomaterials - Provides detailed coverage of the development of functional polymers from a range of sustainable and renewable resources
Synthetic and semi-synthetic polymeric materials were originally developed for their durability and resistance to all forms of degradation including biodegradation. Such materials are currently widely accepted because of their ease of processability and amenability to provide a large variety of cost effective items that help to enhance the comfort and quality of life in the modern industrial society. However, this widespread utilization of plastics has contributed to a serious plastic waste burden, and the expectation for the 21st century is for an increased demand for polymeric material. This volume focuses on a more rational utilization of resources in the fabrication, consumption and disposal of plastic items, specifically: -Environmentally Degradable Polymeric Materials (EDPs); -Water-soluble/Swellable Biodegradable Polymers; -EDPs from Renewable Resources; -Biopolymers; -Bioresorbable Materials for Biomedical Applications; -Biorelated Polymers; -Standards and Regulations on EDPs.
Biodegradable Polymers in the Circular Plastics Economy A comprehensive overview of the burgeoning field of biodegradable plastics As the lasting impact of humanity’s reliance on plastics comes into focus, scholars have begun to seek out solutions to plastic litter. In Biodegradable Polymers in the Circular Plastics Economy, an accomplished team of researchers delivers a focused guide (1) to understand plastic degradation and its role in waste hierarchy besides recycling, and (2) to create and use biodegradable plastics where appropriate. Created preferably from renewable resources, these eco-friendly polymers provide an opportunity to create sustainable and lasting solutions to the growing plastic-driven pollution problem. The broad approach to this handbook allows the authors to cover all aspects of these emerging materials, ranging from the problems present in the current plastics cycle, to the differences in type, production, and chemistry available within these systems, to end-of-life via recycling or degradation, and to life-cycle assessments. It also delves into potential commercial and policy issues to be addressed to successfully deploy this technology. Readers will also find: A thorough introduction to biodegradable polymers, focusing not only on the scientific aspects, but also addressing the larger political, commercial, and consumer concerns Mechanisms of biodegradation and the environmental impact of persistent polymers An in-depth discussion of degradable/hydrolysable polyesters, polysaccharides, lignin-based polymers, and vitrimers Management of plastic waste and life cycle assessment of bio-based plastics Biodegradable Polymers in the Circular Plastics Economy is the perfect overview of this complicated but essential research field and will appeal to polymer chemists, environmental chemists, chemical engineers, and bioengineers in academia and industry. The book is intended as a step towards a circular plastics economy that relies heavily on degradable plastics to sustain it.
This book provides state-of-the-art reviews, current research on and the prospects of lignin production, biological, thermal and chemical conversion methods, and lignin technoeconomics. Fundamental topics related to lignin chemistry, properties, analysis, characterization, and depolymerization mechanisms, as well as enzymatic, fungal and bacterial degradation methods are covered. The book also examines practical topics related to technologies for lignin and ultra-pure lignin recovery, activated carbon, carbon fiber production and materials, and addresses the biological conversion of lignin with fungi, bacteria or enzymes to produce chemicals, along with chemical, catalytic, thermochemical and solvolysis conversion methods. Lastly, it presents a case study on practical polyurethane foam production using lignin. Lignin has a bright future and will be an essential feedstock for producing renewable chemicals, biofuels and value-added products. Offering comprehensive information on this promising material, the book represents a valuable resource for students, researchers, academicians and industrialists in the field of biochemistry and energy.