João Pedro A. Bastos
Published: 2003-04-01
Total Pages: 440
Get eBook
Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the electrical, mechanical, nuclear, aeronautics, and transportation industries. Electromagnetic Modeling by Finite Element Methods offers a wide range of examples, including torque, vibration, and iron loss calculation; coupling of the FEM with mechanical equations, circuits, converters, and thermal effects; material modeling; and proven methods for hysteresis implementation into FEM codes. Providing experimental results and comparisons from the authors' personal research, Electromagnetic Modeling by Finite Element Methods supplies techniques to implement FEM for solving Maxwell's equations, analyze electrical and magnetic losses, determine the behavior of electrical machines, evaluate force distribution on a magnetic medium, simulate movement in electrical machines and electromagnetic devices fed by external circuits or static converters, and analyze the vibrational behavior of electrical machines.