Download Free Hyperthermal Oxidation And Pyrolysis Of Carbon Based Materials Book in PDF and EPUB Free Download. You can read online Hyperthermal Oxidation And Pyrolysis Of Carbon Based Materials and write the review.

The primary focus of this work was to study the chemistry and dynamics of hyperthermal collisions of oxygen atoms with carbon based materials of the kind witnessed in the Low Earth Orbit (LEO) environment and their pyrolysis through atomistic simulations using the ReaxFF reactive force field and to develop ReaxFF potentials for such applications. In particular, ReaxFF was used to study the oxidative erosion of graphene, graphite and diamond subjected to collisions with energetic oxygen atoms at elevated surface temperatures. Prior to these simulations, the ReaxFF C/H/O potential was validated against quantum chemical (QC) data for the energetics associated with the loss of a CO2 molecule from a model graphitic system and for various other chemical reactions occurring during the collision of a hyperthermal oxygen atom with a pristine and defective graphene sheet and a diamond slab. ReaxFF based simulations suggested that the breakup of a graphene sheet and graphite structure upon hyperthermal oxygen atom impact could be divided into distinct regimes. Graphene erosion proceeded through the formation of epoxides on the surface followed by the creation and growth of vacancy defects while the breakup of graphite occurred through the formation of epoxides on the top layer, creation and growth of vacancy defects on the top layer followed by epoxide formation on the bottom layer, creation of defects and their growth on the bottom layer. As such the breakup of graphite was observed to be a layer by layer event with the rate of growth of defects much larger along the basal plane directions compared to the axial direction. With increase in temperature, the rate of mass loss from graphite was observed to increase. While the impact of the oxygen atoms occurred at hyperthermal energies, the chemical reactions leading to mass loss from graphite were thermal in nature. Furthermore, molecular dynamics simulations of carbon loss from graphite at various surface temperatures upon hyperthermal oxygen atom collisions were used to obtain an Arrhenius type rate law for the carbon atom loss rate under such conditions. Further, the direction dependent etching properties of graphite exposed to hypothermal atomic oxygen collisions were also investigated. These simulations revealed that graphite basal planes are poorly resistant to energetic oxygen atom etching while the armchair and zigzag edge surfaces are an order of magnitude more resistant to energetic oxygen atom etching. To compare the response of diamond surfaces with graphite, energetic oxygen atom etching of low index diamond surfaces namely, diamond (100), diamond (111) and diamond (110) were carried out at various surface temperatures using the ReaxFF C/H/O potential. ReaxFF simulations on small oxygen terminated diamond slabs indicated that a variety of functional groups such as ethers, peroxides, oxy radicals and dioxetanes can form on the surface, in agreement with earlier experiments and first principles based calculations. Successive oxygen collisions on larger reconstructed diamond surfaces showed that all the low index surfaces can be etched by hyperthermal atomic oxygen with diamond (100) showing the lowest etching rate and diamond (110) presenting the largest etching rate. The erosion yield of these surfaces is in good agreement with experimental results. The simulations performed here have been used to obtain an Arrhenius type rate law for the mass loss from these surfaces under such conditions. Although diamond surfaces can be etched by energetic oxygen atoms, they were found to be more than two orders of magnitude more resistant to oxidative erosion as compared to graphite basal planes. These simulations suggest that diamond thin films are promising materials for the surface of space crafts exposed to LEO conditions and in general, the ability of ReaxFF to be used as an effective tool to screen or characterize materials for applications in extreme environments.In order to study the interaction of hyperthermal atomic oxygen with silica surfaces, a widely used material for the thermal protection system of high speed aircrafts, the ReaxFFSiO potential was extended to describe oxygen -- silica gas surface interactions by harvesting model clusters representative of a reconstructed (001) silica surface and surface defects on silica, obtaining density functional theory (DFT) based potential energy curves for the approach of an atomic and molecular oxygen to these clusters followed by re-parametrization of the ReaxFFSiO potential against this data. The new potential, ReaxFF-SiO/GSI, can be employed for accurate molecular dynamics simulations of oxygen -- silica gas surface interactions.The thermal fragmentation of a large fullerene molecule was studied through molecular dynamics simulations in order to understand the mechanisms underlying the pyrolysis of carbon based materials. While the performance of the ReaxFF C/H/O potential for the chemistry of graphite and diamond oxidation was very good, its description of the mechanical deformation of carbon condensed phases was not satisfactory. Thus ReaxFF C/H/O was re-parameterized against DFT data for the equation of state of graphite, diamond, the formation energies of defects in graphene and amorphous carbon phases from fullerenes. The newly developed ReaxFF potential (ReaxFFC-2013) was used in the molecular dynamics simulation of the thermal fragmentation of a C180 molecule. The simulations indicated that the thermal fragmentation of these giant fullerenes can be classified into two distinct regimes -- an exponential regime followed by a linear regime. In the initial exponential regime, the molecule shrinks in size but retains the cage like structure while in the final linear regime, the cage opens up into an amorphous phase, resulting in an acceleration of the decay process. Arrhenius parameters for the decay of the molecule in both the regimes were obtained by carrying out simulations at various temperatures. While the decay of the molecule occurred primarily via the loss of C2 units, with increase in temperature, the probability of loss of larger fragments was found to increase. The newly developed potential along with the methods used in this study can readily be extended towards the full computational chemical modeling of the high temperature erosion of graphitic rocket nozzles and ablation of carbon based spacecraft materials during atmospheric reentry. Finally, to explore the possibility of developing carbon based materials resistant to oxidative erosion through the impact of hyperthermal oxygen atoms, oxygen interaction with boron doped graphene was considered. Model clusters representative of boron doped graphene were used to obtain DFT based potential energy curves for the approach of an atomic oxygen to these clusters. This dataset can now be used to parameterize ReaxFF to describe oxygen -- boron doped graphene gas surface interactions.The research work reported in this dissertation lays out a clear strategy to develop a ReaxFF reactive potential and to apply it to study the oxidative degradation and pyrolysis of materials subjected to extreme conditions. Further it provides a straightforward way to extract Arrhenius type parameters from molecular dynamics simulations for the erosion of materials under such conditions. These parameters can be used directly in mesoscale simulation schemes such as Direct Simulation Monte Carlo (DSMC), thereby providing the vital link between atomic scale and macro scale in bottoms up materials design approach.
Explore the dynamic world of carbon-based composites and nanocomposites, where innovation intersects with environmental consciousness. This expansive volume delves into the multifaceted role of carbon composites in combating pollution, from the versatility of activated carbon in adsorbing emerging contaminants to the strategic application of carbon-polymer composites for environmental challenges. Discover the effectiveness of activated carbon in adsorbing emerging contaminants and the strategic use of carbon-polymer composites in addressing environmental challenges. Gain insights into the transformative potential of biochar and the synergistic interplay of carbon and metal nanoparticle composites, carbon nanotubes, and nano-fibers in water purification and sustainable environmental applications.
Synthesis, Technology and Applications of Carbon Nanomaterials explores the chemical properties of different classes of carbon nanomaterials and their major applications. As carbon nanomaterials are used for a variety of applications due to their versatile properties and characteristics, this book discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials. It is an essential resource for readers focusing on carbon nanomaterials research. Explores the chemical properties of different classes of carbon nanomaterials and their major applications Discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials
Carbon-based materials have emerged as versatile and effective solutions in environmental remediation. These materials possess exceptional adsorption properties that enable them to capture and remove a wide range of pollutants from air and water. Their high surface area, porosity, and stability make them ideal for tackling contaminants such as heavy metals, organic compounds, and pesticides. By leveraging these unique properties, carbon-based materials play a crucial role in mitigating environmental pollution and promoting sustainable practices. Carbon-Based Materials and Environmental Remediation: Graphene, Biochar, and More explores the applications of carbon-based materials such as graphene, biochar, and more for environmental remediation. This book delves into the unique properties and mechanisms that make these materials effective in addressing various environmental challenges. Covering topics such as carbon nanomaterials, pesticide remediation, and water pollution control, this book is an essential resource for environmental scientists, chemical engineers, materials scientists, academic researchers, graduate and postgraduate students, and more.
The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. Sustainable Carbon Materials from Hydrothermal Processes describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC). Sustainable Carbon Materials from Hydrothermal Processes presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application for of sustainable carbon materials. Topics covered include: • Green carbon materials • Porous hydrothermal carbons • HTC for the production of valuable carbon hybrid materials • Functionalization of hydrothermal carbon materials • Characterization of HTC materials • Applications of HTC in modern nanotechnology: Energy storage, electrocatalysis in fuel cells, photocatalysis, gas storage, water purification, sensors, bioapplications • Environmental applications of HTC technology: Biochar production, carbon sequestration, and waste conversion • Scale-up in HTC Sustainable Carbon Materials from Hydrothermal Processes will serve as a comprehensive guide for students and newcomers in the field, as well as providing a valuable source of information for researchers and investors looking for alternative technologies to convert biomass into useful products.
Explores the sustainable production of carbon materials and their applications Of increasing interest to practitioners and researchers in a variety of areas, biomass-derived carbon materials can be easily produced and possess the large surface areas and porosities that enable many applications in materials science, biochemistry, chemistry, and energy research. In Biomass-Derived Carbon Materials: Production and Applications, a team of accomplished researchers delivers a thorough and up-to-date exploration of the preparation and activation processes of biomass-derived carbon materials, the fabrication of composites, and assorted and multidisciplinary applications of the technology. The book also covers future opportunities for research and application. Introductory chapters provide information about the production, functionalization, and characterization of biomass-derived carbon materials, while the latter parts of this edited volume discuss the applications of biomass-derived carbon materials such as catalysis, sensors, microbicidal activity, toxic chemicals removal, drug delivery, and energy conversion and storage applications. The book also includes: A thorough introduction to the production of biomass-derived carbon materials, as well as their characterization Comprehensive explorations of biomass-derived carbon-based materials for microbicidal applications and carbon-based nanomaterials prepared from biomass for catalysis Practical discussions of biomass-derived carbon quantum dots for fluorescence sensors and mesoporous carbon nanomaterials for drug delivery and imaging applications In-depth examinations of biomass-derived carbon as electrode materials for batteries and porous carbon synthesized from biomass for fuel cells Ideal for materials scientists as well as industrial chemists and biochemists, Biomass-Derived Carbon Materials: Production and Applications also belongs in the libraries of electrochemists and sensor developers.
An authoritative and robust overview of the synthesis, characterization, and application of carbon-based materials In Enhanced Carbon-Based Materials and Their Applications, a team of distinguished researchers delivers a timely and carefully referenced overview of carbon-based materials and their applications. Following a summary of carbon-based materials and their synthesis methods, the authors move on to highlight advanced topics regarding enhanced carbon-based materials and their applications. Discussions of the discovery of memristor-based memory, substrate options, and the effect of electrodes materials are accompanied by a review of the developments in carbonous materials, an explanation of the working principle of thermoelectric energy harvesting, and the applications of carbon-enhanced piezoelectric materials, sensors, optoelectronic devices, actuators, and display applications as well. The book concludes with a presentation of anticipated future prospects and challenges in this area, including those obstacles that must be addressed before the large-scale production of carbon-based products can begin. Readers will also find: A thorough introduction to carbon-based nanomaterials, including their synthesis and characterization Comprehensive explorations of functional carbon-based nanomaterials and sensor applications, as well as fabrication techniques of resistive switching carbon-based memories Practical discussions of carbonous-based optoelectronic devices, thermoelectric energy harvesters, and their applications Fulsome treatments of carbon-enhanced piezoelectric materials and their applications Perfect for a multi-disciplinary audience in the broader scientific and industrial communities, Enhanced Carbon-Based Materials and Their Applications will also earn a place in the libraries of researchers and industry professionals with an interest in the synthesis and characterization of carbon nanomaterials.
Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications