Download Free Hypersonic Curved Compression Inlet And Its Inverse Design Book in PDF and EPUB Free Download. You can read online Hypersonic Curved Compression Inlet And Its Inverse Design and write the review.

This book presents systematic research results on curved shock wave-curved compression surface applied to the compression surface design of supersonic–hypersonic inlet, which is a brand new inlet design. The concept of supersonic inlet curved compression discussed originated from the author’s research at the Deutsches Zentrum fur Luft- und Raumfahrt (DLR SM-ES) in the early 1990s. This book introduces the research history, working characteristics, performance calculation and aerodynamic configuration design method of this compression mode in detail. It also describes method of estimating the minimum drag in inlet and drag reduction effect of curved compression and proposes a new index for evaluating unit area compression efficiency of the inlet. Further, it reviews the relevant recent research on curved compression. As such it is a valuable resource for students, researchers and scientists in the fields of hypersonic propulsion and aeronautics.
This book mainly introduces the research overview, research results, and follow-up prospects of “Key Basic Scientific Problems on Near-Space Vehicles”, a major research plan of National Natural Science Foundation of China (hereinafter referred to as the Plan). The Plan is the first systematic basic hypersonic research program in China. From its inception in 2007 to its successful completion in 2016, the Plan lasted nine years, funded a total of 173 projects, and the funding totaled 190 million yuan. From the perspective of major national needs and scientific discipline development, the book focuses on four key scientific issues: aerodynamics in a near-space flight environment; advanced propulsion theories and methods; ultralight materials/structures, thermal environment prediction and thermal protection; and intelligent autonomous control theories and methods for hypersonic vehicles. The book also demonstrates China’s systematic and innovative achievements in interdisciplinary theories and methods and innovative techniques, paving the way for a distinctively Chinese basic research framework and further breakthroughs of near-space hypersonic vehicles.
In the aviation field there is great interest in high-speed vehicle design. Hypersonic vehicles represent the next frontier of passenger transportation to and from space. However, several design issues must be addressed, including vehicle aerodynamics and aerothermodynamics, aeroshape design optimization, aerodynamic heating, boundary layer transition, and so on. This book contains valuable contributions focusing on hypervelocity aircraft design. Topics covered include hypersonic aircraft aerodynamic and aerothermodynamic design, especially aeroshape design optimization, computational fluid dynamics, and scramjet propulsion. The book also discusses high-speed flow issues and the challenges to achieving the dream of affordable hypersonic travel. It is hoped that the information contained herein will allow for the development of safe and efficient hypersonic vehicles.
This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.
Characteristics method for determining three dimensional supersonic flow around inclined body of revolution.
An almost entirely self-contained engineering textbook primarily for use in undergraduate and graduate courses in airbreathing propulsion. It provides a broad and basic introduction to the elements needed to work in the field as it develops and grows. Homework problems are provided for almost every individual subject. An extensive array of PC-based user-friendly computer programs is provided in order to facilitate repetitious and/or complex calculations. Annotation copyright by Book News, Inc., Portland, OR