Download Free Hypersonic And Planetary Entry Flight Mechanics Book in PDF and EPUB Free Download. You can read online Hypersonic And Planetary Entry Flight Mechanics and write the review.

Themechanicsofspace?ightisan olddiscipline.Itstopicoriginallywasthemotion of planets, moons and other celestial bodies in gravitational ?elds. Kepler’s (1571 - 1630) observations and measurements have led to probably the ?rst mathematical description of planet’s motion. Newton (1642 - 1727) gave then, with the devel- ment of his principles of mechanics, the physical explanation of these motions. Since then man has started in the second half of the 20th centuryto capture ph- ically the Space in the sense that he did develop arti?cial celestial bodies, which he brought into Earth’s orbits, like satellites or space stations, or which he did send to planets or moons of our planetary system, like probes, or by which p- ple were brought to the moon and back, like capsules. Further he developed an advanced space transportation system, the U.S. Space Shuttle Orbiter, which is the only winged space vehicle ever in operation. In the last two and a half decades there were several activities in the world in order to succeed the U.S. Orbiter, like the HERMES project in Europe, the HOPE project in Japan, the X-33, X-34 and X-37 studies and demonstrators in the United States and the joint U.S. - European project X-38. However, all these projects were cancelled. The motion of these vehicles can be described by Newton’s equation of motion.
This book presents the latest researches on hypersonic steady glide dynamics and guidance, including the concept of steady glide reentry trajectory and the stability of its regular perturbation solutions, trajectory damping control technique for hypersonic glide reentry, singular perturbation guidance of hypersonic glide reentry, trajectory optimization based on steady glide, linear pseudospectral generalized nominal effort miss distance guidance, analytical entry guidance and trajectory-shaping guidance with final speed and load factor constraints. They can be used to solve many new difficult problems in entry guidance. And many practical engineering cases are provided for the readers for better understanding. Researchers and students in the fields of flight vehicle design or flight dynamics, guidance and control could use the book as valuable reference.
This book offers a unified presentation that does not discriminate between atmospheric and space flight. It demonstrates that the two disciplines have evolved from the same set of physical principles and introduces a broad range of critical concepts in an accessible, yet mathematically rigorous presentation. The book presents many MATLAB and Simulink-based numerical examples and real-world simulations. Replete with illustrations, end-of-chapter exercises, and selected solutions, the work is primarily useful as a textbook for advanced undergraduate and beginning graduate-level students.
Covers all aspects of flight performance of modern day high-performance aircraft.
Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis. Key features: Provides practical, real-world examples illustrating key concepts throughout the book Accompanied by a website containing MATLAB M-files for conducting space mission analysis Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering.
In this book selected aerothermodynamic design problems in hypersonic vehicles are treated. Where applicable, it emphasizes the fact that outer surfaces of hypersonic vehicles primarily are radiation-cooled, an interdisciplinary topic with many implications.
This book details science of hypersonics especially focusing on propulsion aspects such as supersonic combustion ramjets and their applications, and also includes lift and drag in hypersonic flight and their mathematical and physical explanation. It provides charts and data from hypersonic testing and measurements from actual vehicles and engines built in the past. Criteria to dimension hypersonic powered and unpowered vehicles (gliders) based on fundamental fluid dynamics and backed by flight testing; criteria to preliminary sizing vehicles and preliminary dimensioning of supersonic combustors are introduced. The book will serve better theoretical understanding of drag, lift and how to apply them to the design of hypersonic vehicles, as well as data to size vehicles and supersonic combustion ramjet (SCRJ) systems. This book will be a useful reference for researchers and designers in hypersonic vehicles but also second or third-year graduate students.