Download Free Hypergraphs Book in PDF and EPUB Free Download. You can read online Hypergraphs and write the review.

This book provides an introduction to hypergraphs, its aim being to overcome the lack of recent manuscripts on this theory. In the literature hypergraphs have many other names such as set systems and families of sets. This work presents the theory of hypergraphs in its most original aspects, while also introducing and assessing the latest concepts on hypergraphs. The variety of topics, their originality and novelty are intended to help readers better understand the hypergraphs in all their diversity in order to perceive their value and power as mathematical tools. This book will be a great asset to upper-level undergraduate and graduate students in computer science and mathematics. It has been the subject of an annual Master's course for many years, making it also ideally suited to Master's students in computer science, mathematics, bioinformatics, engineering, chemistry, and many other fields. It will also benefit scientists, engineers and anyone else who wants to understand hypergraphs theory.
Graph Theory has proved to be an extremely useful tool for solving combinatorial problems in such diverse areas as Geometry, Algebra, Number Theory, Topology, Operations Research and Optimization. It is natural to attempt to generalise the concept of a graph, in order to attack additional combinatorial problems. The idea of looking at a family of sets from this standpoint took shape around 1960. In regarding each set as a ``generalised edge'' and in calling the family itself a ``hypergraph'', the initial idea was to try to extend certain classical results of Graph Theory such as the theorems of Turán and König. It was noticed that this generalisation often led to simplification; moreover, one single statement, sometimes remarkably simple, could unify several theorems on graphs. This book presents what seems to be the most significant work on hypergraphs.
Combinatorial designs represent an important area of contemporary discrete mathematics closely related to such fields as finite geometries, regular graphs and multigraphs, factorisations of graphs, linear algebra, number theory, finite fields, group and quasigroup theory, Latin squares, and matroids. It has a history of more than 150 years when it started as a collection of unrelated problems. Nowadays the field is a well-developed theory with deep mathematical results and a wide range of applications in coding theory, cryptography, computer science, and other areas. In the most general setting, a combinatorial design consists of a ground set of elements and a collection of subsets of these elements satisfying some specific restrictions; the latter are often expressed in the language of graphs. On the other side, hypergraph theory is a relatively new field which started in early 60s of the last century as a generalization of graph theory. A hypergraph consists of a ground set of elements and a collection of subsets of these elements without any specific restrictions. In this sense the concept of hypergraph is more general than the concept of combinatorial design. While it started as a generalization of graph theory, hypergraph theory soon became a separate subject because many new properties have been discovered that miss or degenerate in graphs. Compared to graph theory, the language of hypergraphs not only allows us to formulate and solve more general problems, it also helps us to understand and solve several graph theory problems by simplifying and unifying many previously unrelated concepts. The main feature of this book is applying the hypergraph approach to the theory of combinatorial designs. An alternative title of it could be "Combinatorial designs as hypergraphs". There is no analogue to this book on the market. Its primary audience is researchers and graduate students taking courses in design theory, combinatorial geometry, finite geometry, discrete mathematics, graph theory, combinatorics, cryptography, information and coding theory, and similar areas. The aim of this book is to show the connection and mutual benefit between hypergraph theory and design theory. It does not intend to give a survey of all important results or methods in any of these subjects.
The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory ofcolorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and the maximum number of colors. This feature pervades the theory, methods, algorithms, and applications of mixed hypergraph coloring. The book has broad appeal. It will be of interest to bothpure and applied mathematicians, particularly those in the areas of discrete mathematics, combinatorial optimization, operations research, computer science, software engineering, molecular biology, and related businesses and industries. It also makes a nice supplementary text for courses in graph theory and discrete mathematics. This is especially useful for students in combinatorics and optimization. Since the area is new, students will have the chance at this stage to obtain results that maybecome classic in the future.
In the course of fuzzy technological development, fuzzy graph theory was identified quite early on for its importance in making things work. Two very important and useful concepts are those of granularity and of nonlinear ap proximations. The concept of granularity has evolved as a cornerstone of Lotfi A.Zadeh's theory of perception, while the concept of nonlinear approx imation is the driving force behind the success of the consumer electronics products manufacturing. It is fair to say fuzzy graph theory paved the way for engineers to build many rule-based expert systems. In the open literature, there are many papers written on the subject of fuzzy graph theory. However, there are relatively books available on the very same topic. Professors' Mordeson and Nair have made a real contribution in putting together a very com prehensive book on fuzzy graphs and fuzzy hypergraphs. In particular, the discussion on hypergraphs certainly is an innovative idea. For an experienced engineer who has spent a great deal of time in the lab oratory, it is usually a good idea to revisit the theory. Professors Mordeson and Nair have created such a volume which enables engineers and design ers to benefit from referencing in one place. In addition, this volume is a testament to the numerous contributions Professor John N. Mordeson and his associates have made to the mathematical studies in so many different topics of fuzzy mathematics.
In this research book, there are some research chapters on “Neutrosophic Hypergraphs”. With researches on the basic properties, the research book starts to make Neutrosophic Hypergraphs more understandable. Some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2498 readers in Scribd. It’s titled “Beyond Neutrosophic Graphs” and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. [Ref] Henry Garrett, (2022). “Beyond Neutrosophic Graphs”, Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 978-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf). Also, some studies and researches about neutrosophic graphs, are proposed as book in the following by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3218 readers in Scribd. It’s titled “Neutrosophic Duality” and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It’s smart to consider a set but acting on its complement that what’s done in this research book which is popular in the terms of high readers in Scribd. [Ref] Henry Garrett, (2022). “Neutrosophic Duality”, Florida: GLOBAL KNOW- LEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf). \section{Background} There are some researches covering the topic of this research. In what follows, there are some discussion and literature reviews about them. \\ First article is titled ``properties of SuperHyperGraph and neutrosophic SuperHyperGraph'' in \textbf{Ref.} \cite{HG1} by Henry Garrett (2022). It's first step toward the research on neutrosophic SuperHyperGraphs. This research article is published on the journal ``Neutrosophic Sets and Systems'' in issue 49 and the pages 531-561. In this research article, different types of notions like dominating, resolving, coloring, Eulerian(Hamiltonian) neutrosophic path, n-Eulerian(Hamiltonian) neutrosophic path, zero forcing number, zero forcing neutrosophic- number, independent number, independent neutrosophic-number, clique number, clique neutrosophic-number, matching number, matching neutrosophic-number, girth, neutrosophic girth, 1-zero-forcing number, 1-zero- forcing neutrosophic-number, failed 1-zero-forcing number, failed 1-zero-forcing neutrosophic-number, global- offensive alliance, t-offensive alliance, t-defensive alliance, t-powerful alliance, and global-powerful alliance are defined in SuperHyperGraph and neutrosophic SuperHyperGraph. Some Classes of SuperHyperGraph and Neutrosophic SuperHyperGraph are cases of research. Some results are applied in family of SuperHyperGraph and neutrosophic SuperHyperGraph. Thus this research article has concentrated on the vast notions and introducing the majority of notions. \\ The seminal paper and groundbreaking article is titled ``neutrosophic co-degree and neutrosophic degree alongside chromatic numbers in the setting of some classes related to neutrosophic hypergraphs'' in \textbf{Ref.} \cite{HG2} by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on general forms without using neutrosophic classes of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled “Journal of Current Trends in Computer Science Research (JCTCSR)” with abbreviation ``J Curr Trends Comp Sci Res'' in volume 1 and issue 1 with pages 06-14. The research article studies deeply with choosing neutrosophic hypergraphs instead of neutrosophic SuperHyperGraph. It's the breakthrough toward independent results based on initial background. \\ The seminal paper and groundbreaking article is titled ``Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes'' in \textbf{Ref.} \cite{HG3} by Henry Garrett (2022). In this research article, a novel approach is implemented on SuperHyperGraph and neutrosophic SuperHyperGraph based on fundamental SuperHyperNumber and using neutrosophic SuperHyperClasses of neutrosophic SuperHyperGraph. It's published in prestigious and fancy journal is entitled “Journal of Mathematical Techniques and Computational Mathematics(JMTCM)” with abbreviation ``J Math Techniques Comput Math'' in volume 1 and issue 3 with pages 242-263. The research article studies deeply with choosing directly neutrosophic SuperHyperGraph and SuperHyperGraph. It's the breakthrough toward independent results based on initial background and fundamental SuperHyperNumbers. \\ In some articles are titled ``0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph'' in \textbf{Ref.} \cite{HG4} by Henry Garrett (2022), ``0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs'' in \textbf{Ref.} \cite{HG5} by Henry Garrett (2022), ``Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer’s Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG6} by Henry Garrett (2022), ``Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer’s Recognition'' in \textbf{Ref.} \cite{HG7} by Henry Garrett (2022), ``Neutrosophic Version Of Separates Groups Of Cells In Cancer’s Recognition On Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG8} by Henry Garrett (2022), ``The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer’s Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph'' in \textbf{Ref.} \cite{HG9} by Henry Garrett (2022), ``Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer’s Recognition Applied in (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG10} by Henry Garrett (2022), ``Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer’s Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG11} by Henry Garrett (2022), ``Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG12} by Henry Garrett (2022), ``(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG13} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG14} by Henry Garrett (2022), ``Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond'' in \textbf{Ref.} \cite{HG15} by Henry Garrett (2022), ``(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs '' in \textbf{Ref.} \cite{HG16} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG12} by Henry Garrett (2022), ``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG17} by Henry Garrett (2022), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG18} by Henry Garrett (2022),``(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances'' in \textbf{Ref.} \cite{HG19} by Henry Garrett (2022), ``(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses'' in \textbf{Ref.} \cite{HG20} by Henry Garrett (2022), ``SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions'' in \textbf{Ref.} \cite{HG21} by Henry Garrett (2022), ``Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer’s Treatments'' in \textbf{Ref.} \cite{HG22} by Henry Garrett (2022), ``SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses'' in \textbf{Ref.} \cite{HG23} by Henry Garrett (2022), ``SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer’s Recognition In Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG24} by Henry Garrett (2023), ``The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG25} by Henry Garrett (2023), ``Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG26} by Henry Garrett (2023), ``Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG27} by Henry Garrett (2023), ``Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG28} by Henry Garrett (2023), ``Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique'' in \textbf{Ref.} \cite{HG29} by Henry Garrett (2023), ``Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer’s Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs'' in \textbf{Ref.} \cite{HG30} by Henry Garrett (2023), ``Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG31} by Henry Garrett (2023), ``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints'' in \textbf{Ref.} \cite{HG32} by Henry Garrett (2023), ``(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG33} by Henry Garrett (2023), ``Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond'' in \textbf{Ref.} \cite{HG34} by Henry Garrett (2022), ``(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG35} by Henry Garrett (2022), ``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs'' in \textbf{Ref.} \cite{HG36} by Henry Garrett (2022), ``Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph'' in \textbf{Ref.} \cite{HG37} by Henry Garrett (2022), ``Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)'' in \textbf{Ref.} \cite{HG38} by Henry Garrett (2022), there are some endeavors to formalize the basic SuperHyperNotions about neutrosophic SuperHyperGraph and SuperHyperGraph. \\ Some studies and researches about neutrosophic graphs, are proposed as book in \textbf{Ref.} \cite{HG39} by Henry Garrett (2022) which is indexed by Google Scholar and has more than 2732 readers in Scribd. It's titled ``Beyond Neutrosophic Graphs'' and published by Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United State. This research book covers different types of notions and settings in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. \\ Also, some studies and researches about neutrosophic graphs, are proposed as book in \textbf{Ref.} \cite{HG40} by Henry Garrett (2022) which is indexed by Google Scholar and has more than 3504 readers in Scribd. It's titled ``Neutrosophic Duality'' and published by Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. This research book presents different types of notions SuperHyperResolving and SuperHyperDominating in the setting of duality in neutrosophic graph theory and neutrosophic SuperHyperGraph theory. This research book has scrutiny on the complement of the intended set and the intended set, simultaneously. It's smart to consider a set but acting on its complement that what's done in this research book which is popular in the terms of high readers in Scribd. -- \begin{thebibliography}{595} \bibitem{HG1} Henry Garrett, ``\textit{Properties of SuperHyperGraph and Neutrosophic SuperHyperGraph}'', Neutrosophic Sets and Systems 49 (2022) 531-561 (doi: 10.5281/zenodo.6456413). (http://fs.unm.edu/NSS/NeutrosophicSuperHyperGraph34.pdf). (https://digitalrepository.unm.edu/nss\_journal/vol49/iss1/34). \bibitem{HG2} Henry Garrett, ``\textit{Neutrosophic Co-degree and Neutrosophic Degree alongside Chromatic Numbers in the Setting of Some Classes Related to Neutrosophic Hypergraphs}'', J Curr Trends Comp Sci Res 1(1) (2022) 06-14. \bibitem{HG3} Henry Garrett, ``\textit{Super Hyper Dominating and Super Hyper Resolving on Neutrosophic Super Hyper Graphs and Their Directions in Game Theory and Neutrosophic Super Hyper Classes}'', J Math Techniques Comput Math 1(3) (2022) 242-263. \bibitem{HG4} Garrett, Henry. ``\textit{0039 | Closing Numbers and Super-Closing Numbers as (Dual)Resolving and (Dual)Coloring alongside (Dual)Dominating in (Neutrosophic)n-SuperHyperGraph.}'' CERN European Organization for Nuclear Research - Zenodo, Nov. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.5281/zenodo.6319942. https://oa.mg/work/10.5281/zenodo.6319942 \bibitem{HG5} Garrett, Henry. ``\textit{0049 | (Failed)1-Zero-Forcing Number in Neutrosophic Graphs.}'' CERN European Organization for Nuclear Research - Zenodo, Feb. 2022. CERN European Organization for Nuclear Research, https://doi.org/10.13140/rg.2.2.35241.26724. https://oa.mg/work/10.13140/rg.2.2.35241.26724 \bibitem{HG6} Henry Garrett, ``\textit{Extreme SuperHyperClique as the Firm Scheme of Confrontation under Cancer’s Recognition as the Model in The Setting of (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010308 (doi: 10.20944/preprints202301.0308.v1). \bibitem{HG7} Henry Garrett, ``\textit{Uncertainty On The Act And Effect Of Cancer Alongside The Foggy Positions Of Cells Toward Neutrosophic Failed SuperHyperClique inside Neutrosophic SuperHyperGraphs Titled Cancer’s Recognition}'', Preprints 2023, 2023010282 (doi: 10.20944/preprints202301.0282.v1). \bibitem{HG8} Henry Garrett, ``\textit{Neutrosophic Version Of Separates Groups Of Cells In Cancer’s Recognition On Neutrosophic SuperHyperGraphs}'', Preprints 2023, 2023010267 (doi: 10.20944/preprints202301.0267.v1). \bibitem{HG9} Henry Garrett, ``\textit{The Shift Paradigm To Classify Separately The Cells and Affected Cells Toward The Totality Under Cancer’s Recognition By New Multiple Definitions On the Sets Polynomials Alongside Numbers In The (Neutrosophic) SuperHyperMatching Theory Based on SuperHyperGraph and Neutrosophic SuperHyperGraph}'', Preprints 2023, 2023010265 (doi: 10.20944/preprints202301.0265.v1). \bibitem{HG10} Henry Garrett, ``\textit{Breaking the Continuity and Uniformity of Cancer In The Worst Case of Full Connections With Extreme Failed SuperHyperClique In Cancer’s Recognition Applied in (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010262,(doi: 10.20944/preprints202301.0262.v1). \bibitem{HG11} Henry Garrett, ``\textit{Neutrosophic Failed SuperHyperStable as the Survivors on the Cancer’s Neutrosophic Recognition Based on Uncertainty to All Modes in Neutrosophic SuperHyperGraphs}'', Preprints 2023, 2023010240 (doi: 10.20944/preprints202301.0240.v1). \bibitem{HG12} Henry Garrett, ``\textit{Extremism of the Attacked Body Under the Cancer's Circumstances Where Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010224, (doi: 10.20944/preprints202301.0224.v1). \bibitem{HG13} Henry Garrett, ``\textit{(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1). \bibitem{HG14} Henry Garrett, ``\textit{Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints}'', Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1). \bibitem{HG15} Henry Garrett, ``\textit{Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond}'', Preprints 2023, 2023010044 \bibitem{HG16} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well- SuperHyperModelled (Neutrosophic) SuperHyperGraphs}'', Preprints 2023, 2023010043 (doi: 10.20944/preprints202301.0043.v1). \bibitem{HG17} Henry Garrett, \textit{``Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs''}, Preprints 2023, 2023010105 (doi: 10.20944/preprints202301.0105.v1). \bibitem{HG18} Henry Garrett, \textit{``Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints''}, Preprints 2023, 2023010088 (doi: 10.20944/preprints202301.0088.v1). \bibitem{HG19} Henry Garrett, \textit{``(Neutrosophic) SuperHyperModeling of Cancer’s Recognitions Featuring (Neutrosophic) SuperHyperDefensive SuperHyperAlliances''}, Preprints 2022, 2022120549 (doi: 10.20944/preprints202212.0549.v1). \bibitem{HG20} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperAlliances With SuperHyperDefensive and SuperHyperOffensive Type-SuperHyperSet On (Neutrosophic) SuperHyperGraph With (Neutrosophic) SuperHyperModeling of Cancer’s Recognitions And Related (Neutrosophic) SuperHyperClasses}'', Preprints 2022, 2022120540 (doi: 10.20944/preprints202212.0540.v1). \bibitem{HG21} Henry Garrett, ``\textit{SuperHyperGirth on SuperHyperGraph and Neutrosophic SuperHyperGraph With SuperHyperModeling of Cancer’s Recognitions}'', Preprints 2022, 2022120500 (doi: 10.20944/preprints202212.0500.v1). \bibitem{HG22} Henry Garrett, ``\textit{Some SuperHyperDegrees and Co-SuperHyperDegrees on Neutrosophic SuperHyperGraphs and SuperHyperGraphs Alongside Applications in Cancer’s Treatments}'', Preprints 2022, 2022120324 (doi: 10.20944/preprints202212.0324.v1). \bibitem{HG23} Henry Garrett, ``\textit{SuperHyperDominating and SuperHyperResolving on Neutrosophic SuperHyperGraphs And Their Directions in Game Theory and Neutrosophic SuperHyperClasses}'', Preprints 2022, 2022110576 (doi: 10.20944/preprints202211.0576.v1). \bibitem{HG24} Henry Garrett,``\textit{SuperHyperMatching By (R-)Definitions And Polynomials To Monitor Cancer’s Recognition In Neutrosophic SuperHyperGraphs}'', ResearchGate 2023,(doi: 10.13140/RG.2.2.35061.65767). \bibitem{HG25} Henry Garrett,``\textit{The Focus on The Partitions Obtained By Parallel Moves In The Cancer's Extreme Recognition With Different Types of Extreme SuperHyperMatching Set and Polynomial on (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.18494.15680). \bibitem{HG26} Henry Garrett,``\textit{Extreme Failed SuperHyperClique Decides the Failures on the Cancer's Recognition in the Perfect Connections of Cancer's Attacks By SuperHyperModels Named (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.32530.73922). \bibitem{HG27} Henry Garrett,``\textit{Indeterminacy On The All Possible Connections of Cells In Front of Cancer's Attacks In The Terms of Neutrosophic Failed SuperHyperClique on Cancer's Recognition called Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.15897.70243). \bibitem{HG28} Henry Garrett,``\textit{Perfect Directions Toward Idealism in Cancer's Neutrosophic Recognition Forwarding Neutrosophic SuperHyperClique on Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.30092.80004). \bibitem{HG29} Henry Garrett,``\textit{Demonstrating Complete Connections in Every Embedded Regions and Sub-Regions in the Terms of Cancer's Recognition and (Neutrosophic) SuperHyperGraphs With (Neutrosophic) SuperHyperClique}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.23172.19849). \bibitem{HG30} Henry Garrett,``\textit{Different Neutrosophic Types of Neutrosophic Regions titled neutrosophic Failed SuperHyperStable in Cancer’s Neutrosophic Recognition modeled in the Form of Neutrosophic SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.17385.36968). \bibitem{HG31} Henry Garrett, ``\textit{Using the Tool As (Neutrosophic) Failed SuperHyperStable To SuperHyperModel Cancer's Recognition Titled (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.28945.92007). \bibitem{HG32} Henry Garrett, ``\textit{Neutrosophic Messy-Style SuperHyperGraphs To Form Neutrosophic SuperHyperStable To Act on Cancer’s Neutrosophic Recognitions In Special ViewPoints}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.11447.80803). \bibitem{HG33} Henry Garrett, ``\textit{(Neutrosophic) SuperHyperStable on Cancer’s Recognition by Well-SuperHyperModelled (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2023, (doi: 10.13140/RG.2.2.35774.77123). \bibitem{HG34} Henry Garrett, ``\textit{Neutrosophic 1-Failed SuperHyperForcing in the SuperHyperFunction To Use Neutrosophic SuperHyperGraphs on Cancer’s Neutrosophic Recognition And Beyond}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.36141.77287). \bibitem{HG35} Henry Garrett, ``\textit{(Neutrosophic) 1-Failed SuperHyperForcing in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.29430.88642). \bibitem{HG36} Henry Garrett, ``\textit{Basic Notions on (Neutrosophic) SuperHyperForcing And (Neutrosophic) SuperHyperModeling in Cancer’s Recognitions And (Neutrosophic) SuperHyperGraphs}'', ResearchGate 2022, (doi: 10.13140/RG.2.2.11369.16487). \bibitem{HG37} Henry Garrett, \textit{``Basic Neutrosophic Notions Concerning SuperHyperDominating and Neutrosophic SuperHyperResolving in SuperHyperGraph''}, ResearchGate 2022 (doi: 10.13140/RG.2.2.29173.86244). \bibitem{HG38} Henry Garrett, ``\textit{Initial Material of Neutrosophic Preliminaries to Study Some Neutrosophic Notions Based on Neutrosophic SuperHyperEdge (NSHE) in Neutrosophic SuperHyperGraph (NSHG)}'', ResearchGate 2022 (doi: 10.13140/RG.2.2.25385.88160). \bibitem{HG39} Henry Garrett, (2022). ``\textit{Beyond Neutrosophic Graphs}'', Ohio: E-publishing: Educational Publisher 1091 West 1st Ave Grandview Heights, Ohio 43212 United States. ISBN: 979-1-59973-725-6 (http://fs.unm.edu/BeyondNeutrosophicGraphs.pdf). \bibitem{HG40} Henry Garrett, (2022). ``\textit{Neutrosophic Duality}'', Florida: GLOBAL KNOWLEDGE - Publishing House 848 Brickell Ave Ste 950 Miami, Florida 33131 United States. ISBN: 978-1-59973-743-0 (http://fs.unm.edu/NeutrosophicDuality.pdf). \end{thebibliography}
In the course of fuzzy technological development, fuzzy graph theory was identified quite early on for its importance in making things work. Two very important and useful concepts are those of granularity and of nonlinear ap proximations. The concept of granularity has evolved as a cornerstone of Lotfi A.Zadeh's theory of perception, while the concept of nonlinear approx imation is the driving force behind the success of the consumer electronics products manufacturing. It is fair to say fuzzy graph theory paved the way for engineers to build many rule-based expert systems. In the open literature, there are many papers written on the subject of fuzzy graph theory. However, there are relatively books available on the very same topic. Professors' Mordeson and Nair have made a real contribution in putting together a very com prehensive book on fuzzy graphs and fuzzy hypergraphs. In particular, the discussion on hypergraphs certainly is an innovative idea. For an experienced engineer who has spent a great deal of time in the lab oratory, it is usually a good idea to revisit the theory. Professors Mordeson and Nair have created such a volume which enables engineers and design ers to benefit from referencing in one place. In addition, this volume is a testament to the numerous contributions Professor John N. Mordeson and his associates have made to the mathematical studies in so many different topics of fuzzy mathematics.
This book presents the fundamental and technical concepts of fuzzy hypergraphs and explains their extensions and applications. It discusses applied generalized mathematical models of hypergraphs, including complex, intuitionistic, bipolar, m-polar fuzzy, Pythagorean, complex Pythagorean, and q-rung orthopair hypergraphs, as well as single-valued neutrosophic, complex neutrosophic and bipolar neutrosophic hypergraphs. In addition, the book also sheds light on real-world applications of these hypergraphs, making it a valuable resource for students and researchers in the field of mathematics, as well as computer and social scientists.
Combinatorics is a book whose main theme is the study of subsets of a finite set. It gives a thorough grounding in the theories of set systems and hypergraphs, while providing an introduction to matroids, designs, combinatorial probability and Ramsey theory for infinite sets. The gems of the theory are emphasized: beautiful results with elegant proofs. The book developed from a course at Louisiana State University and combines a careful presentation with the informal style of those lectures. It should be an ideal text for senior undergraduates and beginning graduates.