Download Free Hypergraph Theory Book in PDF and EPUB Free Download. You can read online Hypergraph Theory and write the review.

This book provides an introduction to hypergraphs, its aim being to overcome the lack of recent manuscripts on this theory. In the literature hypergraphs have many other names such as set systems and families of sets. This work presents the theory of hypergraphs in its most original aspects, while also introducing and assessing the latest concepts on hypergraphs. The variety of topics, their originality and novelty are intended to help readers better understand the hypergraphs in all their diversity in order to perceive their value and power as mathematical tools. This book will be a great asset to upper-level undergraduate and graduate students in computer science and mathematics. It has been the subject of an annual Master's course for many years, making it also ideally suited to Master's students in computer science, mathematics, bioinformatics, engineering, chemistry, and many other fields. It will also benefit scientists, engineers and anyone else who wants to understand hypergraphs theory.
Combinatorial designs represent an important area of contemporary discrete mathematics closely related to such fields as finite geometries, regular graphs and multigraphs, factorisations of graphs, linear algebra, number theory, finite fields, group and quasigroup theory, Latin squares, and matroids. It has a history of more than 150 years when it started as a collection of unrelated problems. Nowadays the field is a well-developed theory with deep mathematical results and a wide range of applications in coding theory, cryptography, computer science, and other areas. In the most general setting, a combinatorial design consists of a ground set of elements and a collection of subsets of these elements satisfying some specific restrictions; the latter are often expressed in the language of graphs. On the other side, hypergraph theory is a relatively new field which started in early 60s of the last century as a generalization of graph theory. A hypergraph consists of a ground set of elements and a collection of subsets of these elements without any specific restrictions. In this sense the concept of hypergraph is more general than the concept of combinatorial design. While it started as a generalization of graph theory, hypergraph theory soon became a separate subject because many new properties have been discovered that miss or degenerate in graphs. Compared to graph theory, the language of hypergraphs not only allows us to formulate and solve more general problems, it also helps us to understand and solve several graph theory problems by simplifying and unifying many previously unrelated concepts. The main feature of this book is applying the hypergraph approach to the theory of combinatorial designs. An alternative title of it could be "Combinatorial designs as hypergraphs". There is no analogue to this book on the market. Its primary audience is researchers and graduate students taking courses in design theory, combinatorial geometry, finite geometry, discrete mathematics, graph theory, combinatorics, cryptography, information and coding theory, and similar areas. The aim of this book is to show the connection and mutual benefit between hypergraph theory and design theory. It does not intend to give a survey of all important results or methods in any of these subjects.
Graph Theory has proved to be an extremely useful tool for solving combinatorial problems in such diverse areas as Geometry, Algebra, Number Theory, Topology, Operations Research and Optimization. It is natural to attempt to generalise the concept of a graph, in order to attack additional combinatorial problems. The idea of looking at a family of sets from this standpoint took shape around 1960. In regarding each set as a ``generalised edge'' and in calling the family itself a ``hypergraph'', the initial idea was to try to extend certain classical results of Graph Theory such as the theorems of Turán and König. It was noticed that this generalisation often led to simplification; moreover, one single statement, sometimes remarkably simple, could unify several theorems on graphs. This book presents what seems to be the most significant work on hypergraphs.
This book is for math and computer science majors, for students and representatives of many other disciplines (like bioinformatics, for example) taking courses in graph theory, discrete mathematics, data structures, algorithms. It is also for anyone who wants to understand the basics of graph theory, or just is curious. No previous knowledge in graph theory or any other significant mathematics is required. The very basic facts from set theory, proof techniques and algorithms are sufficient to understand it; but even those are explained in the text. Structurally, the text is divided into two parts where Part II is the generalisation of Part I. The first part discusses the key concepts of graph theory with emphasis on trees, bipartite graphs, cycles, chordal graphs, planar graphs and graph colouring. The second part considers generalisations of Part I and discusses hypertrees, bipartite hypergraphs, hypercycles, chordal hypergraphs, planar hypergraphs and hypergraph colouring. There is an interaction between the parts and within the parts to show how ideas of generalisations work. The main point is to exhibit the ways of generalisations and interactions of mathematical concepts from the very simple to the most advanced. One of the features of this text is the duality of hypergraphs. This fundamental concept is missing in graph theory (and in its introductory teaching) because dual graphs are not properly graphs, they are hypergraphs. However, as Part II shows, the duality is a very powerful tool in understanding, simplifying and unifying many combinatorial relations; it is basically a look at the same structure from the opposite (vertices versus edges) point of view.
This brief focuses on introducing a novel mathematical framework, referred as hypergraph theory, to model and solve the multiple interferer scenarios for future wireless communication networks. First, in Chap. 1, the authors introduce the basic preliminaries of hypergraph theory in general, and develop two hypergraph based polynomial algorithms, i.e., hypergraph coloring and hypergraph clustering. Then, in Chaps. 2 and 3, the authors present two emerging applications of hypergraph coloring and hypergraph clustering in Device-to-Device (D2D) underlay communication networks, respectively, in order to show the advantages of hypergraph theory compared with the traditional graph theory. Finally, in Chap. 4, the authors discuss the limitations of using hypergraph theory in future wireless networks and briefly present some other potential applications. This brief introduces the state-of-the-art research on the hypergraph theory and its applications in wireless communications. An efficient framework is provided for the researchers, professionals and advanced level students who are interested in the radio resource allocation in the heterogeneous networks to solve the resource allocation and interference management problems.
This book presents some of the numerous applications of hyperstructures, especially those that were found and studied in the last fifteen years. There are applications to the following subjects: 1) geometry; 2) hypergraphs; 3) binary relations; 4) lattices; 5) fuzzy sets and rough sets; 6) automata; 7) cryptography; 8) median algebras, relation algebras; 9) combinatorics; 10) codes; 11) artificial intelligence; 12) probabilities. Audience: Graduate students and researchers.
This volume explains the general theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics: fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, fractional isomorphism, and more. 1997 edition.
Tensors, or hypermatrices, are multi-arrays with more than two indices. In the last decade or so, many concepts and results in matrix theory?some of which are nontrivial?have been extended to tensors and have a wide range of applications (for example, spectral hypergraph theory, higher order Markov chains, polynomial optimization, magnetic resonance imaging, automatic control, and quantum entanglement problems). The authors provide a comprehensive discussion of this new theory of tensors. Tensor Analysis: Spectral Theory and Special Tensors is unique in that it is the first book on these three subject areas: spectral theory of tensors; the theory of special tensors, including nonnegative tensors, positive semidefinite tensors, completely positive tensors, and copositive tensors; and the spectral hypergraph theory via tensors. ?
The authors develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: `space barriers' from convex geometry, and `divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, they introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. They determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, their main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, the authors apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in -graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemerédi Theorem. Here they prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical they defer it to a subsequent paper.
This book gives the state-of-the-art on transversals in linear uniform hypergraphs. The notion of transversal is fundamental to hypergraph theory and has been studied extensively. Very few articles have discussed bounds on the transversal number for linear hypergraphs, even though these bounds are integral components in many applications. This book is one of the first to give strong non-trivial bounds on the transversal number for linear hypergraphs. The discussion may lead to further study of those problems which have not been solved completely, and may also inspire the readers to raise new questions and research directions. The book is written with two readerships in mind. The first is the graduate student who may wish to work on open problems in the area or is interested in exploring the field of transversals in hypergraphs. This exposition will go far to familiarize the student with the subject, the research techniques, and the major accomplishments in the field. The photographs included allow the reader to associate faces with several researchers who made important discoveries and contributions to the subject. The second audience is the established researcher in hypergraph theory who will benefit from having easy access to known results and latest developments in the field of transversals in linear hypergraphs.