Download Free Hypergeometric Functions Over Finite Fields Book in PDF and EPUB Free Download. You can read online Hypergeometric Functions Over Finite Fields and write the review.

The theory of hypergeometric functions over finite fields was developed in the mid- 1980s by Greene. Since that time, connections between these functions and elliptic curves and modular forms have been investigated by mathematicians such as Ahlgren, Frechette, Koike, Ono, and Papanikolas. In this dissertation, we begin by giving a survey of these results and introducing hypergeometric functions over finite fields. We then focus on a particular family of elliptic curves whose j-invariant gives an automorphism of P1. We present an explicit relationship between the number of points on this family over Fp and the values of a particular hypergeometric function over Fp. Then, we use the same family of elliptic curves to construct a formula for the traces of Hecke operators on cusp forms in level 1, utilizing results of Hijikata and Schoof. This leads to formulas for Ramanujan's [pi]-function in terms of hypergeometric functions.
Classical hypergeometric functions and their relations to counting points on curves over finite fields have been investigated by mathematicians since the beginnings of 1900. In the mid 1980s, John Greene developed the theory of hypergeometric functions over finite fi elds. He explored the properties of these functions and found that they satisfy many summation and transformation formulas analogous to those satisfi ed by the classical functions. These similarities generated interest in finding connections that hypergeometric functions over finite fields may have with other objects. In recent years, connections between these functions and elliptic curves and other Calabi-Yau varieties have been investigated by mathematicians such as Ahlgren, Frechette, Fuselier, Koike, Ono and Papanikolas. A survey of these results is given at the beginning of this dissertation. We then introduce hypergeometric functions over finite fi elds and some of their properties. Next, we focus our attention on a particular family of curves and give an explicit relationship between the number of points on this family over Fq and sums of values of certain hypergeometric functions over Fq. Moreover, we show that these hypergeometric functions can be explicitly related to the roots of the zeta function of the curve over Fq in some particular cases. Based on numerical computations, we are able to state a conjecture relating these values in a more general setting, and advances toward the proof of this result are shown in the last chapter of this dissertation. We nish by giving various avenues for future study.
View the abstract.
This volume presents the idea that one studies orthogonal polynomials and special functions to use them to solve problems.
The intent of this thesis is to provide a detailed study of the arithmetic and analytic properties of Gaussian (finite field) hypergeometric series. We present expressions for the number of F,-points on certain families of varieties as special values of these functions. We also present "hypergeometric trace formulas" for the traces of Hecke operators on spaces of cusp forms of levels 3 and 9. These formulas lead to a simple expression for the Fourier coefficients of r(3z)', the unique normalized cusp form of weight 4 and level 9. We then use this to show that a certain threefold is "modular" in the sense that the number of its F,-points is expressible in terms of these coefficients. In this way, we use Gaussian hypergeometric series as a tool for connecting arithmetic and analytic objects. We also discuss congruence relations between Gaussian and truncated classical hypergeometric series. In particular, we use hypergeometric transformation identities to express the pth Fourier coefficient of the unique newform of level 16 and weight 4 as a special value of a Gaussian hypergeometric series, when p =1 (mod 4). We then use this to prove a special case of Rodriguez-Villegas' supercongruence conjectures.
The theory of partitions, founded by Euler, has led in a natural way to the idea of basic hypergeometric series, also known as Eulerian series. These series were first studied systematically by Heine, but many early results are attributed to Euler, Gauss, and Jacobi. This book provides a simple approach to basic hypergeometric series.
​MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in its second year, 2017: - Hypergeometric Motives and Calabi–Yau Differential Equations - Computational Inverse Problems - Integrability in Low-Dimensional Quantum Systems - Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of Gilbarg and Trudinger’s Book - Combinatorics, Statistical Mechanics, and Conformal Field Theory - Mathematics of Risk - Tutte Centenary Retreat - Geometric R-Matrices: from Geometry to Probability The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
The main topics of this volume, dedicated to Lance Littlejohn, are operator and spectral theory, orthogonal polynomials, combinatorics, number theory, and the various interplays of these subjects. Although the event, originally scheduled as the Baylor Analysis Fest, had to be postponed due to the pandemic, scholars from around the globe have contributed research in a broad range of mathematical fields. The collection will be of interest to both graduate students and professional mathematicians. Contributors are: G.E. Andrews, B.M. Brown, D. Damanik, M.L. Dawsey, W.D. Evans, J. Fillman, D. Frymark, A.G. García, L.G. Garza, F. Gesztesy, D. Gómez-Ullate, Y. Grandati, F.A. Grünbaum, S. Guo, M. Hunziker, A. Iserles, T.F. Jones, K. Kirsten, Y. Lee, C. Liaw, F. Marcellán, C. Markett, A. Martinez-Finkelshtein, D. McCarthy, R. Milson, D. Mitrea, I. Mitrea, M. Mitrea, G. Novello, D. Ong, K. Ono, J.L. Padgett, M.M.M. Pang, T. Poe, A. Sri Ranga, K. Schiefermayr, Q. Sheng, B. Simanek, J. Stanfill, L. Velázquez, M. Webb, J. Wilkening, I.G. Wood, M. Zinchenko.