Download Free Hypergeometric Functions On Domains Of Positivity Jack Polynomials And Applications Book in PDF and EPUB Free Download. You can read online Hypergeometric Functions On Domains Of Positivity Jack Polynomials And Applications and write the review.

This book is the first set of proceedings to be devoted entirely to the theory of hypergeometric functions defined on domains of positivity. Most of the scientific areas in which these functions are applied include analytic number theory, combinatorics, harmonic analysis, random walks, representation theory, and mathematical physics - are represented here. This volume is based largely on lectures presented at a Special Session at the AMS meeting in Tampa, Florida in March 1991, which was devoted to hypergeometric functions of matrix argument and to fostering communication among representatives of the diverse scientific areas in which these functions are utilized. Accessible to graduate students and others seeking an introduction to the state of the art in this area, this book is a suitable text for advanced graduate seminar courses for it contains many open problems.
This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.
The subject of symmetric functions began with the work of Jacobi, Schur, Weyl, Young and others on the Schur polynomials. In the 1950's and 60's, far-reaching generalizations of Schur polynomials were obtained by Hall and Littlewood (independently) and, in a different direction, by Jack. In the 1980's, Macdonald unified these developments by introducing a family of polynomials associated with arbitrary root systems. The last twenty years have witnessed considerable progress in this area, revealing new and profound connections with representation theory, algebraic geometry, combinatorics, special functions, classical analysis and mathematical physics. All these fields and more are represented in this volume, which contains the proceedings of a conference on Jack, Hall-Littlewood and Macdonald polynomials held at ICMS, Edinburgh, during September 23-26, 2003. of historical material, including brief biographies of Hall, Littlewood, Jack and Macdonald; the original papers of Littlewood and Jack; notes on Hall's work by Macdonald; and a recently discovered unpublished manuscript by Jack (annotated by Macdonald). The book will be invaluable to students and researchers who wish to learn about this beautiful and exciting subject.
A collection of articles on various aspects of q-series and special functions dedicated to Mizan Rahman. It also includes an article by Askey, Ismail, and Koelink on Rahman’s mathematical contributions and how they influenced the recent upsurge in the subject.
Orthogonal polynomials of several variables, approximation theory, symmetry-group methods.
This volume is the proceedings of the conference on Automorphic Representations, L-functions and Applications: Progress and Prospects, held at the Department of Mathematics of The Ohio State University, March 27-30, 2003, in honor of the 60th birthday of Steve Rallis. The theory of automorphic representations, automorphic L-functions and their applications to arithmetic continues to be an area of vigorous and fruitful research. The contributed papers in this volume represent many of the most recent developments and directions, including Rankin-Selberg L-functions (Bump, Ginzburg-Jiang-Rallis, Lapid-Rallis) the relative trace formula (Jacquet, Mao-Rallis) automorphic representations (Gan-Gurevich, Ginzburg-Rallis-Soudry) representation theory of p-adic groups (Baruch, Kudla-Rallis, Moeglin, Cogdell-Piatetski-Shapiro-Shahidi) p-adic methods (Harris-Li-Skinner, Vigneras), and arithmetic applications (Chinta-Friedberg-Hoffstein). The survey articles by Bump, on the Rankin-Selberg method, and by Jacquet, on the relative trace formula, should be particularly useful as an introduction to the key ideas about these important topics. This volume should be of interest both to researchers and students in the area of automorphic representations, as well as to mathematicians in other areas interested in having an overview of current developments in this important field.
Presenting a comprehensive theory of orthogonal polynomials in two real variables and properties of Fourier series in these polynomials, this volume also gives cases of orthogonality over a region and on a contour. The text includes the classification of differential equations which admits orthogonal polynomials as eigenfunctions and several two-dimensional analogies of classical orthogonal polynomials.
This book contains proceedings from the Seventh International Conference on Domain Decomposition Methods, held at Pennsylvania State University in October 1993. The term ``domain decomposition'' has for nearly a decade been associated with the partly iterative, partly direct algorithms explored in the proceedings of this conference. Noteworthy trends in the current volume include progress in dealing with so-called ``bad parameters'' in elliptic partial differential equation problems, as well as developments in partial differential equations outside of the elliptically-dominated framework. Also described here are convergence and complexity results for novel discretizations, which bring with them new challenges in the derivation of appropriate operators for coarsened spaces. Implementations and architectural considerations are discussed, as well as partitioning tools and environments. In addition, the book describes a wide array of applications, from semiconductor device simulation to structural mechanics to aerodynamics. Presenting many of the latest results in the field, this book offers readers an up-to-date guide to the many facets of the theory and practice of domain decomposition.
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.