Download Free Hypergeometric Functions My Love Book in PDF and EPUB Free Download. You can read online Hypergeometric Functions My Love and write the review.

The classical story - of the hypergeometric functions, the configuration space of 4 points on the projective line, elliptic curves, elliptic modular functions and the theta functions - now evolves, in this book, to the story of hypergeometric funktions in 4 variables, the configuration space of 6 points in the projective plane, K3 surfaces, theta functions in 4 variables. This modern theory has been established by the author and his collaborators in the 1990's; further development to different aspects is expected. It leads the reader to a fascinating 4-dimensional world. The author tells the story casually and visually in a plain language, starting form elementary level such as equivalence relations, the exponential function, ... Undergraduate students should be able to enjoy the text.
Significant revision of classic reference in special functions.
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.
View the abstract.
This volume comprises lecture notes, survey and research articles originating from the CIMPA Summer School Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray University, Istanbul, June 13-25, 2005. It covers a wide range of topics related to hypergeometric functions, thus giving a broad perspective of the state of the art in the field.
Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}’_{216}$. It provides another beautiful example on the fundamental unity of mathematics.
This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.
This book provides the reader with user-friendly applications of normal distribution. In several variables it is called the multinormal distribution which is often handled using matrices for convenience. The author seeks to make the arguments less abstract and hence, starts with the univariate case and moves progressively toward the vector and matrix cases. The approach used in the book is a gradual one, going from one scalar variable to a vector variable and to a matrix variable. The author presents the unified aspect of normal distribution, as well as addresses several other issues, including random matrix theory in physics. Other well-known applications, such as Herrnstein and Murray's argument that human intelligence is substantially influenced by both inherited and environmental factors, will be discussed in this book. It is a better predictor of many personal dynamics — including financial income, job performance, birth out of wedlock, and involvement in crime — than are an individual's parental socioeconomic status, or education level, and deserve to be mentioned and discussed.
The theory of Gröbner bases is a main tool for dealing with rings of differential operators. This book reexamines the concept of Gröbner bases from the point of view of geometric deformations. The algorithmic methods introduced in this book are particularly useful for studying the systems of multidimensional hypergeometric PDE's introduced by Gelfand, Kapranov, and Zelevinsky. A number of original research results are contained in the book, and many open problems are raised for future research in this rapidly growing area of computational mathematics.
Asymptotic Approximations of Integrals deals with the methods used in the asymptotic approximation of integrals. Topics covered range from logarithmic singularities and the summability method to the distributional approach and the Mellin transform technique for multiple integrals. Uniform asymptotic expansions via a rational transformation are also discussed, along with double integrals with a curve of stationary points. For completeness, classical methods are examined as well. Comprised of nine chapters, this volume begins with an introduction to the fundamental concepts of asymptotics, followed by a discussion on classical techniques used in the asymptotic evaluation of integrals, including Laplace's method, Mellin transform techniques, and the summability method. Subsequent chapters focus on the elementary theory of distributions; the distributional approach; uniform asymptotic expansions; and integrals which depend on auxiliary parameters in addition to the asymptotic variable. The book concludes by considering double integrals and higher-dimensional integrals. This monograph is intended for graduate students and research workers in mathematics, physics, and engineering.