Download Free Hypercomplex Analysis New Perspectives And Applications Book in PDF and EPUB Free Download. You can read online Hypercomplex Analysis New Perspectives And Applications and write the review.

Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.
Contains selected papers from the ISAAC conference 2007 and invited contributions. This book covers various topics that represent the main streams of research in hypercomplex analysis as well as the expository articles. It is suitable for researchers and postgraduate students in various areas of mathematical analysis.
This book contains a selection of papers presented at the session "Quaternionic and Clifford Analysis" at the 10th ISAAC Congress held in Macau in August 2015. The covered topics represent the state-of-the-art as well as new trends in hypercomplex analysis and its applications.
This volume presents selected contributions from experts gathered at Chapman University for a conference held in November 2019 on new directions in function theory. The papers, written by leading researchers in the field, relate to hypercomplex analysis, Schur analysis and de Branges spaces, new aspects of classical function theory, and infinite dimensional analysis. Signal processing constitutes a strong presence in several of the papers.A second volume in this series of conferences, this book will appeal to mathematicians interested in learning about new fields of development in function theory.
This Briefs volume develops the theory of entire slice regular functions. It is the first self-contained, monographic work on the subject, offering all the necessary background information and detailed studies on several central topics, including estimates on the minimum modulus of regular functions, relations between Taylor coefficients and the growth of entire functions, density of their zeros, and the universality properties. The proofs presented here shed new light on the nature of the quaternionic setting and provide inspiration for further research directions. Also featuring an exhaustive reference list, the book offers a valuable resource for graduate students, postgraduate students and researchers in various areas of mathematical analysis, in particular hypercomplex analysis and approximation theory.
This book surveys the foundations of the theory of slice regular functions over the quaternions, introduced in 2006, and gives an overview of its generalizations and applications. As in the case of other interesting quaternionic function theories, the original motivations were the richness of the theory of holomorphic functions of one complex variable and the fact that quaternions form the only associative real division algebra with a finite dimension n>2. (Slice) regular functions quickly showed particularly appealing features and developed into a full-fledged theory, while finding applications to outstanding problems from other areas of mathematics. For instance, this class of functions includes polynomials and power series. The nature of the zero sets of regular functions is particularly interesting and strictly linked to an articulate algebraic structure, which allows several types of series expansion and the study of singularities. Integral representation formulas enrich the theory and are fundamental to the construction of a noncommutative functional calculus. Regular functions have a particularly nice differential topology and are useful tools for the construction and classification of quaternionic orthogonal complex structures, where they compensate for the scarcity of conformal maps in dimension four. This second, expanded edition additionally covers a new branch of the theory: the study of regular functions whose domains are not axially symmetric. The volume is intended for graduate students and researchers in complex or hypercomplex analysis and geometry, function theory, and functional analysis in general.
The six-volume set LNCS 8579-8584 constitutes the refereed proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, held in Guimarães, Portugal, in June/July 2014. The 347 revised papers presented in 30 workshops and a special track were carefully reviewed and selected from 1167 initial submissions. The 289 papers presented in the workshops cover various areas in computational science ranging from computational science technologies to specific areas of computational science such as computational geometry and security.
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
This book, intended to commemorate the work of Paul Dirac, highlights new developments in the main directions of Clifford analysis. Just as complex analysis is based on the algebra of the complex numbers, Clifford analysis is based on the geometric Clifford algebras. Many methods and theorems from complex analysis generalize to higher dimensions in various ways. However, many new features emerge in the process, and much of this work is still in its infancy. Some of the leading mathematicians working in this field have contributed to this book in conjunction with “Clifford Analysis and Related Topics: a conference in honor of Paul A.M. Dirac,” which was held at Florida State University, Tallahassee, on December 15-17, 2014. The content reflects talks given at the conference, as well as contributions from mathematicians who were invited but were unable to attend. Hence much of the mathematics presented here is not only highly topical, but also cannot be found elsewhere in print. Given its scope, the book will be of interest to mathematicians and physicists working in these areas, as well as students seeking to catch up on the latest developments.
The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.