Download Free Hyperbolic Structures Book in PDF and EPUB Free Download. You can read online Hyperbolic Structures and write the review.

Hyperbolic structures analyses the interactions of form with the structural behaviour of hyperbolic lattice towers, and the effects of the various influencing factors were determined with the help of parametric studies and load capacity analyses. This evaluation of Shukhov’s historical calculations and the reconstruction of the design and development process of his water towers shows why the Russian engineer is considered not only a pathfinder for lightweight structures but also a pioneer of parametrised design processes.
The study of hyperbolic systems is one of the core themes of modern dynamical systems. This book plays an important role in filling a gap in the present literature on hyperbolic dynamics and is highly recommended for all PhD students interested in this field.
Articles in this volume are based on lectures given at three conferences on Geometry at the Frontier, held at the Universidad de la Frontera, Pucón, Chile in 2016, 2017, and 2018. The papers cover recent developments on the theory of algebraic varieties—in particular, of their automorphism groups and moduli spaces. They will be of interest to anyone working in the area, as well as young mathematicians and students interested in complex and algebraic geometry.
This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmüller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston’s wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.
The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.
Few people have proved more influential in the field of differential and algebraic geometry, and in showing how this links with mathematical physics, than Nigel Hitchin. Oxford University's Savilian Professor of Geometry has made fundamental contributions in areas as diverse as: spin geometry, instanton and monopole equations, twistor theory, symplectic geometry of moduli spaces, integrables systems, Higgs bundles, Einstein metrics, hyperkähler geometry, Frobenius manifolds, Painlevé equations, special Lagrangian geometry and mirror symmetry, theory of grebes, and many more. He was previously Rouse Ball Professor of Mathematics at Cambridge University, as well as Professor of Mathematics at the University of Warwick, is a Fellow of the Royal Society and has been the President of the London Mathematical Society. The chapters in this fascinating volume, written by some of the greats in their fields (including four Fields Medalists), show how Hitchin's ideas have impacted on a wide variety of subjects. The book grew out of the Geometry Conference in Honour of Nigel Hitchin, held in Madrid, with some additional contributions, and should be required reading for anyone seeking insights into the overlap between geometry and physics.
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume I contains William Thurston's papers on foliations, mapping classes groups, and differential geometry.