Download Free Hydropower Energy And The Environment Book in PDF and EPUB Free Download. You can read online Hydropower Energy And The Environment and write the review.

'We are experiencing the beginning of an energy revolution in these early years of the 21st century.' Water, Energy, and Environment - A Primer provides an introduction to, and explanation of, this revolution.
Hydropower provides a complete discussion of the most up-to-date considerations of this method of creating renewable energy. After introducing the method's history, the author explores various considerations for engineers, planners and managers who need to determine the best placement and size of a plant. The book then presents various types of hydropower systems, such as Run-of-River Schemes and various types of Dam and Turbines, also considering the important economic, environmental and geological impacts of each. Those involved in the planning, design and management of hydropower systems, such as engineers, researchers, managers and policymakers will find this book a very valuable and insightful resource. - Explores different types of dams and turbines set alongside easy-to-understand diagrams, such as Embankment Dams, Concrete Arch Dams, Reaction Turbines and Francis Turbines - Considers various economic and environmental factors significant for this type of project, such as resettlement, biodiversity and greenhouse gases - Discusses best practices for locating a hydropower site and how to make important decisions regarding placement and method
Providing essential theory and useful practical techniques for implementing hydroelectric projects, this book outlines the resources, power generation technologies, applications, and strengths and weaknesses for hydroelectric technologies. Emphasizing the links between energy and the environment, it serves as a useful background resource and facilitates decision-making regarding which renewable energy technology works best for different types of applications and regions. Including examples, real-world case studies, and lessons learned, each chapter contains exercise questions, references, and ample photographs and technical drawings from actual micro hydropower plants.
Sustainable Hydropower in West Africa: Planning, Operation, and Challenges provides a comprehensive overview of the planning, deployment and management of hydropower in West Africa and similar regions. The authors use a practical approach to analyze available technology, modeling methodologies and sustainability aspects, such as the dependence between climate and hydropower, and socio-economic and environmental impacts. They discuss the need for innovative solutions and how to close research gaps in the field for this region. Although more than 50% of West Africa's hydropower potential is still untapped, re-engineering and maintenance of existing hydropower plants is a key issue and is discussed. Issues of productivity and optimization are also covered, as well as the introduction of new technology and integration of hydropower into existing energy systems—renewable energy systems, in particular. Policy and regulation are also examined, considering competing needs when managing water resources. The final chapter offers a summary of activities, strategies, policies and technology for easy reference and practical use. Due to its wide coverage and real life examples, this is a useful reference for engineering professionals in the field of hydropower, working in West Africa and regions with similar conditions. This book helps engineers make technology and location decisions for planning, deploying and operating hydropower plants. The book's accessible language and international authorship also allows for easy use by energy researchers, analysts and policy makers who need information for the analysis, modeling, financing, implementation and regulation of hydropower in West Africa and related regions. - Presents the most current issues related to hydropower deployment and management in West Africa and regions with similar conditions - Discusses key challenges, focusing on practical aspects and methodologies - Explores the technological, sustainability and economic aspects to be considered when deploying, operating and maintaining hydropower plants in West Africa and similar regions
Global trends of population growth, rising living standards and the rapidly increasing urbanized world are increasing the demand on water, food and energy. Added to this is the growing threat of climate change which will have huge impacts on water and food availability. It is increasingly clear that there is no place in an interlinked world for isolated solutions aimed at just one sector. In recent years the "nexus" has emerged as a powerful concept to capture these inter-linkages of resources and is now a key feature of policy-making. This book is one of the first to provide a broad overview of both the science behind the nexus and the implications for policies and sustainable development. It brings together contributions by leading intergovernmental and governmental officials, industry, scientists and other stakeholder thinkers who are working to develop the approaches to the Nexus of water-food-energy and climate. It represents a major synthesis and state-of-the-art assessment of the Nexus by major players, in light of the adoption by the United Nations of the new Sustainable Development Goals and Targets in 2015. With a foreword by HRH the Prince of Wales
This book was written by undergraduate students at The Ohio State University (OSU) who were enrolled in the class Introduction to Environmental Science. The chapters describe some of Earth's major environmental challenges and discuss ways that humans are using cutting-edge science and engineering to provide sustainable solutions to these problems. Topics are as diverse as the students, who represent virtually every department, school and college at OSU. The environmental issue that is described in each chapter is particularly important to the author, who hopes that their story will serve as inspiration to protect Earth for all life.
The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
This book addresses challenges and opportunities in the Energy-Water-Environment (EWE) nexus, with a particular focus on research and technology development requirements in harsh desert climates. Its chapters include selected contributions presented during the 1st international conference on sustainable Energy-Water-Environment nexus in desert climates (ICSEWEN-19) held at the Qatar Environment and Energy Research Institute (QEERI) in Doha, Qatar in December 2019. This volume is comprised of three main chapters, each describing important case studies and progress on water, energy and environmental questions. A fourth chapter on policies and community outreach on these three areas is also included. This compilation aims to bridge the gap between research and industry to address the socioeconomic impacts of the nexus imbalance as perceived by scientists, industrial partners, and policymakers. The content of this book is of particular importance to graduate students, researchers and decision makers interested in understanding water, energy and environmental challenges in arid areas. Re searchers in environmental and civil engineering, chemistry, hydrology and environmental science can also find unique in-situ observations of the current nexus imbalance in deserts climate to validate their investigations. It is also an invaluable guide for industry professionals working in water, energy, environment and food sectors to understand the rapidly evolving landscape of the EWE nexus in arid areas. The analyses, observations and lessons-learned summarized herein are applicable to other arid areas outside North Africa and the Arabian Peninsula as well, such as central Australia, the southwest of the United States and deserts in central Asia.
This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.