Download Free Hydrology Principles Analysis And Design Book in PDF and EPUB Free Download. You can read online Hydrology Principles Analysis And Design and write the review.

An attempt is made to place before students (degree and post-degree) and professionals in the fields of Civil and Agricultural Engineering, Geology and Earth Sciences, this important branch of Hydroscience, i.e., Hydrology. It deals with all phases of the Hydrologic cycle and related opics in a lucid style and in metric system. There is a departure from empiricism, with emphasis on collection of hydrological data, processing and analysis of data, and hydrological design on sound principles and matured judgement. Large number of hydrological design problems are worked out at the end of each article, to illustrate the principles involved and the design procedure. Problems for assignment are given at the end of each chapter, along with objective type and intelligence questions.
This book presents a systematic approach to understanding and applying the principles of hydrology and hydroclimatology, examining the interactions among different components of the water cycle. It takes a fresh look at the fundamentals and challenges in hydrologic and hydroclimatic systems as well as climate change. The author describes the application of nontraditional data sets and new investigation techniques to water-related problems. He also examines long lead forecasting and simulation, time series analysis, and risk and uncertainty in hydrologic design.
Hydrology covers the fundamentals of hydrology and hydrogeology, taking an environmental slant dictated by the emphasis in recent times for the remediation of contaminated aquifers and surface-water bodies as well as a demand for new designs that impose the least negative impact on the natural environment. Major topics covered include hydrological principles, groundwater flow, groundwater contamination and clean-up, groundwater applications to civil engineering, well hydraulics, and surface water. Additional topics addressed include flood analysis, flood control, and both ground-water and surface-water applications to civil engineering design.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Understand the fundamentals, methods, and processes of modern hydrology This comprehensive engineering textbook offers a thorough overview of all aspects of hydrology and shows how to apply hydrologic principles for effective management of water resources. It presents detailed explanations of scientific principles along with real-world applications and technologies. Engineering Hydrology: An Introduction to Processes, Analysis, and Modeling follows a logical progression that builds on foundational concepts with modern hydrologic methods. Every hydrologic process is clearly explained along with current techniques for modeling and analyzing data. You will get practice problems throughout that help reinforce important concepts. Coverage includes: •The hydrologic cycle •Water balance •Components of the hydrologic cycle •Evapotranspiration •Infiltration and soil moisture •Surface water •Groundwater •Water quality •Hydrologic measurements •Streamflow measurement •Remote sensing and geographic information systems •Hydrologic analysis and modeling •Unit hydrograph models •River flow modeling •Design storm and design flood estimation •Environmental flows •Impact of climate change on water management
Radar Hydrology: Principles, Models, and Applications provides graduate students, operational forecasters, and researchers with a theoretical framework and practical knowledge of radar precipitation estimation. The only text on the market solely devoted to radar hydrology, this comprehensive reference: Begins with a brief introduction to radar Focuses on the processing of radar data to arrive at accurate estimates of rainfall Addresses advanced radar sensing principles and applications Covers radar technologies for observing each component of the hydrologic cycle Examines state-of-the-art hydrologic models and their inputs, parameters, state variables, calibration procedures, and outputs Discusses contemporary approaches in data assimilation Concludes with methods, case studies, and prediction system design Includes downloadable MATLAB® content Flooding is the #1 weather-related natural disaster worldwide. Radar Hydrology: Principles, Models, and Applications aids in understanding the physical systems and detection tools, as well as designing prediction systems.
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. McCuen’s Hydrologic Analysis and Design, Fourth Edition is intended for a first course in hydrology. The text introduces the reader to the physical processes of the hydrologic cycle, the computational fundamentals of hydrologic analysis, and the elements of design hydrology. Although sections of the book introduce engineering design methods for engineering students, the concepts and methods pertain to students in a range of similar disciplines including geology, geography, forestry, and planning. The Fourth Edition streamlines the organization of the chapters to strengthen the focus and scope of each section. McCuen remains vigilant of the various ways hydrology is taught, making flexibility a touchstone of the book’s structure. The marked flexibility in all 13 chapters provides knowledge about new design procedures, methods, and philosophies.
Hydrogeology: Principles and Practice provides a comprehensive introduction to the study of hydrogeology to enable the reader to appreciate the significance of groundwater in meeting current and future water resource challenges. This new edition has been thoroughly updated to reflect advances in the field since 2004. The book presents a systematic approach to understanding groundwater. Earlier chapters explain the fundamental physical and chemical principles of hydrogeology, and later chapters feature groundwater investigation techniques in the context of catchment processes, as well as chapters on groundwater quality and contaminant hydrogeology. Unique features of the book are chapters on the applications of environmental isotopes and noble gases in the interpretation of aquifer evolution, and on regional characteristics such as topography, compaction and variable fluid density in the explanation of geological processes affecting past, present and future groundwater flow regimes. The last chapter discusses groundwater resources and environmental management, and examines the role of groundwater in integrated river basin management, including an assessment of possible adaptation responses to the impacts of climate change. Throughout the text, boxes and a set of colour plates drawn from the authors’ teaching and research experience are used to explain special topics and to illustrate international case studies ranging from transboundary aquifers and submarine groundwater discharge to the over-pressuring of groundwater in sedimentary basins. The appendices provide conversion tables and useful reference material, and include review questions and exercises, with answers, to help develop the reader’s knowledge and problem-solving skills in hydrogeology. This accessible textbook is essential reading for undergraduate and graduate students primarily in earth sciences, environmental sciences and physical geography with an interest in hydrogeology or groundwater science. The book will also find use among practitioners in hydrogeology, soil science, civil engineering and planning who are involved in environmental and resource protection issues requiring an understanding of groundwater. Additional resources can be found at: www.wiley.com/go/hiscock/hydrogeology