Download Free Hydrologic Routing Book in PDF and EPUB Free Download. You can read online Hydrologic Routing and write the review.

The book starts with the hydrologic cycle which is the central concept of hydrology. Then it moves on to basics of hydrometeorology, abstraction losses like infiltration, runoff in different forms, instantaneous unit hydrograph (IUH) and its mathematical concepts like convolution integral, synthetic unit hydrograph (SUH) and S-hydrograph. Finally, the text concludes with estimation of flood by empirical equations and different flood frequency analysis, and hydrology of basin management which deals with soil conservation, water shed management and control of soil erosion that are very important for agricultural engineering.
Elementary Engineering Hydrology is a textbook for undergraduate and diploma students of civil engineering. It provides a comprehensive coverage of all the essential aspects of hydrology. To make it easy for students to grasp the concepts, all important topics have been divided into sub-topics, lending clarity to the subject matter. The text is interspersed with numerous figures and tables, and a wide range of solved problems to illustrate the underlying concepts and techniques effectively. Simple and comprehensible for beginners in the course, this book also contains a host of additional information, by way of appendices, including India's National Water Policy, water resources of India and also a guide to using survey maps. These features of the book will make it an invaluable reference book for practicing engineers as well.
This fully revised edition provides a modern overview of the intersection of hydrology, water quality, and water management at the rural-urban interface. The book explores the ecosystem services available in wetlands, natural channels and ponds/lakes. As in the first edition, Part I examines the hydrologic cycle by providing strategies for quantifying each component: rainfall (with NOAH 14), infiltration, evapotranspiration and runoff. Part II examines field and farm scale water quality with an introduction to erosion prediction and water quality. Part III provides a concise examination of water management on the field and farm scale, emphasizing channel design, field control structures, measurement structures, groundwater processes and irrigation principles. Part IV then concludes the text with a treatment of basin-scale processes. A comprehensive suite of software tools is available for download, consisting of Excel spreadsheets, with some public domain models such as HY-8 culvert design, and software with public domain readers such as Mathematica, Maple and TK solver.
Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sponsor the ASI and an organizing committee was formed. The committee comprised the co directors, Professor David S. Bowles (U.S.A.) and Professor P. Enda O'Connell (U.K.), and Professor Francisco Nunes-Correia (Portugal), Dr. Donn G. DeCoursey (U.S.A.), and Professor Ezio Todini (Italy).
This book presents a systematic approach to understanding and applying the principles of hydrology and hydroclimatology, examining the interactions among different components of the water cycle. It takes a fresh look at the fundamentals and challenges in hydrologic and hydroclimatic systems as well as climate change. The author describes the applic
The natural scarcity of water in arid and semiarid regions, aggravated by man-made factors, makes it difficult to achieve a reliable water resources supply. Communities in these areas pay the price for thousands of years of water manipulation. Presenting important insight into the complexities of arid region hydrology, Engineering Hydrology of Arid
New research opportunities to advance hydrologic sciences promise a better understanding of the role of water in the Earth system that could help improve human welfare and the health of the environment. Reaching this understanding will require both exploratory research to better understand how the natural environment functions, and problem-driven research, to meet needs such as flood protection, supply of drinking water, irrigation, and water pollution. Collaboration among hydrologists, engineers, and scientists in other disciplines will be central to meeting the interdisciplinary research challenges outline in this report. New technological capabilities in remote sensing, chemical analysis, computation, and hydrologic modeling will help scientists leverage new research opportunities.
Hydrodynamics and Transport for Water Quality Modeling presents a complete overview of current methods used to describe or predict transport in aquatic systems, with special emphasis on water quality modeling. The book features detailed descriptions of each method, supported by sample applications and case studies drawn from the authors' years of experience in the field. Each chapter examines a variety of modeling approaches, from simple to complex. This unique text/reference offers a wealth of information previously unavailable from a single source. The book begins with an overview of basic principles, and an introduction to the measurement and analysis of flow. The following section focuses on rivers and streams, including model complexity and data requirements, methods for estimating mixing, hydrologic routing methods, and unsteady flow modeling. The third section considers lakes and reservoirs, and discusses stratification and temperature modeling, mixing methods, reservoir routing and water balances, and dynamic modeling using one-, two-, and three-dimensional models. The book concludes with a section on estuaries, containing topics such as origins and classification, tides, mixing methods, tidally averaged estuary models, and dynamic modeling. Over 250 figures support the text. This is a valuable guide for students and practicing modelers who do not have extensive backgrounds in fluid dynamics.
Introductory technical guidance for civil engineers interested in flood control engineering. Here is what is discussed: 1. RAINFALL AND SNOWFALL ANALYSIS 2. INFILTRATION/LOSS ANALYSIS 3. PRECIPITATION-TO-RUNOFF ANALYSIS 4. SUB-SURFACE RUNOFF ANALYSIS 5. STREAMFLOW FREQUENCY ANALYSIS 6. STREAMFLOW AND RESERVOIR ROUTING